616 resultados para Nonlinear portal frame dynamics
Resumo:
This paper describes the use of the Euler equations for the generation and testing of tabular aerodynamic models for flight dynamics analysis. Maneuvers for the AGARD Standard Dynamics Model sharp leading-edge wind-tunnel geometry are considered as a test case. Wind-tunnel data is first used to validate the prediction of static and dynamic coefficients at both low and high angles, featuring complex vortical flow, with good agreement obtained at low to moderate angles of attack. Then the generation of aerodynamic tables is described based on a data fusion approach. Time-optimal maneuvers are generated based on these tables, including level flight trim, pull-ups at constant and varying incidence, and level and 90 degrees turns. The maneuver definition includes the aircraft states and also the control deflections to achieve the motion. The main point of the paper is then to assess the validity of the aerodynamic tables which were used to define the maneuvers. This is done by replaying them, including the control surface motions, through the time accurate computational fluid dynamics code. The resulting forces and moments are compared with the tabular values to assess the presence of inadequately modeled dynamic or unsteady effects. The agreement between the tables and the replay is demonstrated for slow maneuvers. Increasing rate maneuvers show discrepancies which are ascribed to vortical flow hysteresis at the higher rate motions. The framework is suitable for application to more complex viscous flow models, and is powerful for the assessment of the validity of aerodynamics models of the type currently used for studies of flight dynamics.
Resumo:
A method is described to allow searches for transonic aeroelastic instability of realistically sized aircraft models in multidimensional parameter spaces when computational fluid dynamics are used to model the aerodynamics. Aeroelastic instability is predicted from a small nonlinear eigenvalue problem. The approximation of the computationally expensive interaction term modeling the fluid response is formulated to allow the automated and blind search for aeroelastic instability. The approximation uses a kriging interpolation of exact numerical samples covering the parameter space. The approach, demonstrated for the Goland wing and the multidisciplinary optimization transport wing, results in stability analyses over whole flight envelopes at an equivalent cost of several steady-state simulations.
Resumo:
In this paper the use of eigenvalue stability analysis of very large dimension aeroelastic numerical models arising from the exploitation of computational fluid dynamics is reviewed. A formulation based on a block reduction of the system Jacobian proves powerful to allow various numerical algorithms to be exploited, including frequency domain solvers, reconstruction of a term describing the fluid–structure interaction from the sparse data which incurs the main computational cost, and sampling to place the expensive samples where they are most needed. The stability formulation also allows non-deterministic analysis to be carried out very efficiently through the use of an approximate Newton solver. Finally, the system eigenvectors are exploited to produce nonlinear and parameterised reduced order models for computing limit cycle responses. The performance of the methods is illustrated with results from a number of academic and large dimension aircraft test cases.
Resumo:
Using recently proposed measures for non-Markovianity [H.-P. Breuer, E. M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)], we study the dynamics of a qubit coupled to a spin environment via an energy-exchange mechanism. We show the existence of a point, in the parameter space of the system, where the qubit dynamics is effectively Markovian and that such a point separates two regions with completely different dynamical behaviors. Indeed, our study demonstrates that the qubit evolution can in principle be tuned from a perfectly forgetful one to a deep non-Markovian regime where the qubit is strongly affected by the dynamical backaction of the environmental spins. By means of a theoretical quantum process tomography analysis, we provide a complete and intuitive characterization of the qubit channel.
Resumo:
This paper describes the application of an improved nonlinear principal component analysis (PCA) to the detection of faults in polymer extrusion processes. Since the processes are complex in nature and nonlinear relationships exist between the recorded variables, an improved nonlinear PCA, which incorporates the radial basis function (RBF) networks and principal curves, is proposed. This algorithm comprises two stages. The first stage involves the use of the serial principal curve to obtain the nonlinear scores and approximated data. The second stage is to construct two RBF networks using a fast recursive algorithm to solve the topology problem in traditional nonlinear PCA. The benefits of this improvement are demonstrated in the practical application to a polymer extrusion process.
Resumo:
Nonlinear principal component analysis (PCA) based on neural networks has drawn significant attention as a monitoring tool for complex nonlinear processes, but there remains a difficulty with determining the optimal network topology. This paper exploits the advantages of the Fast Recursive Algorithm, where the number of nodes, the location of centres, and the weights between the hidden layer and the output layer can be identified simultaneously for the radial basis function (RBF) networks. The topology problem for the nonlinear PCA based on neural networks can thus be solved. Another problem with nonlinear PCA is that the derived nonlinear scores may not be statistically independent or follow a simple parametric distribution. This hinders its applications in process monitoring since the simplicity of applying predetermined probability distribution functions is lost. This paper proposes the use of a support vector data description and shows that transforming the nonlinear principal components into a feature space allows a simple statistical inference. Results from both simulated and industrial data confirm the efficacy of the proposed method for solving nonlinear principal component problems, compared with linear PCA and kernel PCA.
Resumo:
This article discusses the identification of nonlinear dynamic systems using multi-layer perceptrons (MLPs). It focuses on both structure uncertainty and parameter uncertainty, which have been widely explored in the literature of nonlinear system identification. The main contribution is that an integrated analytic framework is proposed for automated neural network structure selection, parameter identification and hysteresis network switching with guaranteed neural identification performance. First, an automated network structure selection procedure is proposed within a fixed time interval for a given network construction criterion. Then, the network parameter updating algorithm is proposed with guaranteed bounded identification error. To cope with structure uncertainty, a hysteresis strategy is proposed to enable neural identifier switching with guaranteed network performance along the switching process. Both theoretic analysis and a simulation example show the efficacy of the proposed method.
Resumo:
It is convenient and effective to solve nonlinear problems with a model that has a linear-in-the-parameters (LITP) structure. However, the nonlinear parameters (e.g. the width of Gaussian function) of each model term needs to be pre-determined either from expert experience or through exhaustive search. An alternative approach is to optimize them by a gradient-based technique (e.g. Newton’s method). Unfortunately, all of these methods still need a lot of computations. Recently, the extreme learning machine (ELM) has shown its advantages in terms of fast learning from data, but the sparsity of the constructed model cannot be guaranteed. This paper proposes a novel algorithm for automatic construction of a nonlinear system model based on the extreme learning machine. This is achieved by effectively integrating the ELM and leave-one-out (LOO) cross validation with our two-stage stepwise construction procedure [1]. The main objective is to improve the compactness and generalization capability of the model constructed by the ELM method. Numerical analysis shows that the proposed algorithm only involves about half of the computation of orthogonal least squares (OLS) based method. Simulation examples are included to confirm the efficacy and superiority of the proposed technique.
Resumo:
The nonlinear dynamics of electrostatic solitary waves in the form of localized modulated wavepackets is investigated from first principles. Electron-acoustic (EA) excitations are considered in a two-electron plasma, via a fluid formulation. The plasma, assumed to be collisionless and uniform (unmagnetized), is composed of two types of electrons (inertial cold electrons and inertialess kappa-distributed superthermal electrons) and stationary ions. By making use of a multiscale perturbation technique, a nonlinear Schrodinger equation is derived for the modulated envelope, relying on which the occurrence of modulational instability (MI) is investigated in detail. Stationary profile localized EA excitations may exist, in the form of bright solitons (envelope pulses) or dark envelopes (voids). The presence of superthermal electrons modifies the conditions for MI to occur, as well as the associated threshold and growth rate. The concentration of superthermal electrons (i.e., the deviation from a Maxwellian electron distribution) may control or even suppress MI. Furthermore, superthermality affects the characteristics of solitary envelope structures, both qualitatively (supporting one or the other type, for different.) and quantitatively, changing their characteristics (width, amplitude). The stability of bright and dark-type nonlinear structures is confirmed by numerical simulations.