288 resultados para Antenna Arrays
Resumo:
Transdermal drug delivery offers a number of advantages for the patient, due not only its non-invasive and convenient nature, but also factors such as avoidance of first pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedle arrays can increase the number of compounds amenable to transdermal delivery by penetrating the skin's protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below. Microneedles have been extensively investigated in recent decades for drug and vaccine delivery as well as minimally invasive patient monitoring/diagnosis. This review focuses on a range of critically important aspects of microneedle technology, namely their material composition, manufacturing techniques, methods of evaluation and commercial translation to the clinic for patient benefit and economic return. Microneedle research and development is finally now at the stage where commercialisation is a realistic possibility. However, progress is still required in the areas of scaled-up manufacture and regulatory approval.
Resumo:
Wave energy converters, by their nature, extract large amounts of energy
from incident waves. If the industry is to progress such that wave energy
becomes a significant provider of power in the future, large wave farms will
be required. Presently, consenting for these sites is a long and problematic
process, mainly due to a lack of knowledge of the potential environmental
impacts. Accurate numerical modelling of the effect of wave energy extraction
on the wave field and subsequent evaluation of changes to coastal
processes is therefore required. Modelling the wave field impact is also
necessary to allow optimum wave farm configurations to be determined.
This thesis addresses the need for more accurate representation of wave
energy converters in numerical models so that the effect on the wave field,
and subsequently the coastal processes, may be evaluated. Using a hybrid
of physical and numerical modelling (MIKE21 BW and SW models) the
effect of energy extraction and operation of a WEC array on the local wave
climate has been determined.
The main outcomes of the thesis are: an improved wave basin facility, in
terms of wave climate homogeneity, reducing the standard deviation of wave
amplitude by up to 50%; experimental measurement of the wave field around
WEC arrays, showing that radiated waves account for a significant proportion
of the wave disturbance; a new representation method of WECs for use
with standard numerical modelling tools, validated against experimental
results.
The methodology and procedures developed here allow subsequent evaluation
of changes to coastal processes and sediment transport due to WEC
arrays.
Resumo:
Large-scale commercial exploitation of wave energy is certain to require the deployment of wave energy converters (WECs) in arrays, creating ‘WEC farms’. An understanding of the hydrodynamic interactions in such arrays is essential for determining optimum layouts of WECs, as well as calculating the area of ocean that the farms will require. It is equally important to consider the potential impact of wave farms on the local and distal wave climates and coastal processes; a poor understanding of the resulting environmental impact may hamper progress, as it would make planning consents more difficult to obtain. It is therefore clear that an understanding the interactions between WECs within a farm is vital for the continued development of the wave energy industry.To support WEC farm design, a range of different numerical models have been developed, with both wave phase-resolving and wave phase-averaging models now available. Phase-resolving methods are primarily based on potential flow models and include semi-analytical techniques, boundary element methods and methods involving the mild-slope equations. Phase-averaging methods are all based around spectral wave models, with supra-grid and sub-grid wave farm models available as alternative implementations.The aims, underlying principles, strengths, weaknesses and obtained results of the main numerical methods currently used for modelling wave energy converter arrays are described in this paper, using a common framework. This allows a qualitative comparative analysis of the different methods to be performed at the end of the paper. This includes consideration of the conditions under which the models may be applied, the output of the models and the relationship between array size and computational effort. Guidance for developers is also presented on the most suitable numerical method to use for given aspects of WEC farm design. For instance, certain models are more suitable for studying near-field effects, whilst others are preferable for investigating far-field effects of the WEC farms. Furthermore, the analysis presented in this paper identifies areas in which the numerical modelling of WEC arrays is relatively weak and thus highlights those in which future developments are required.