441 resultados para 0101 Pure Mathematics
Resumo:
Nano- and meso-scale simulation of chemical ordering kinetics in nano-layered L1(0)-AB binary intermetallics was performed. In the nano- (atomistic) scale Monte Carlo (MC) technique with vacancy mechanism of atomic migration implemented with diverse models for the system energetics was used. The meso-scale microstructure evolution was, in turn, simulated by means of a MC procedure applied to a system built of meso-scale voxels ordered in particular L1(0) variants. The voxels were free to change the L1(0) variant and interacted with antiphase-boundary energies evaluated within the nano-scale simulations. The study addressed FePt thin layers considered as a material for ultra-high-density magnetic storage media and revealed metastability of the L1(0) c-variant superstructure with monoatomic planes parallel to the (001)-oriented layer surface and off-plane easy magnetization. The layers, originally perfectly ordered in the c-variant, showed discontinuous precipitation of a- and b-L1(0)-variant domains running in parallel with homogeneous disordering (i.e. generation of antisite defects). The domains nucleated heterogeneously on the free monoatomic Fe surface of the layer, grew inwards its volume and relaxed towards an equilibrium microstructure of the system. Two
Resumo:
MALDI (matrix-assisted laser desorption/ionization) is one of the most important techniques used to produce large biomolecular ions in the gas phase. Surprisingly, the exact ionization mechanism is still not well understood and absolute values for the ion yields are scarce. This is in part due to the unknown efficiencies of typical detectors, especially for heavy biomolecular ions. As an alternative, charged particles can be non-destructively detected using an image-charge detector where the output voltage signal is proportional to the total charge within the device. In this paper, we report an absolute calibration which provides the voltage output per detected electronic charge in our experimental arrangement. A minimum of 3 x 10(3) ions were required to distinguish the signal above background noise in a single pass through the device, which could be further reduced using filtering techniques. The calibration results have been applied to raw MALDI spectra to measure absolute ion yields of both matrix and analyte ions.
Resumo:
The finite state Markov-chain approximation methods developed by Tauchen (1986) and Tauchen and Hussey (1991) are widely used in economics, finance and econometrics to solve functional equations in which state variables follow autoregressive processes. For highly persistent processes, the methods require a large number of discrete values for the state variables to produce close approximations which leads to an undesirable reduction in computational speed, especially in a multivariate case. This paper proposes an alternative method of discretizing multivariate autoregressive processes. This method can be treated as an extension of Rouwenhorst's (1995) method which, according to our finding, outperforms the existing methods in the scalar case for highly persistent processes. The new method works well as an approximation that is much more robust to the number of discrete values for a wide range of the parameter space.
Resumo:
In this article, we extend the earlier work of Freeland and McCabe [Journal of time Series Analysis (2004) Vol. 25, pp. 701–722] and develop a general framework for maximum likelihood (ML) analysis of higher-order integer-valued autoregressive processes. Our exposition includes the case where the innovation sequence has a Poisson distribution and the thinning is binomial. A recursive representation of the transition probability of the model is proposed. Based on this transition probability, we derive expressions for the score function and the Fisher information matrix, which form the basis for ML estimation and inference. Similar to the results in Freeland and McCabe (2004), we show that the score function and the Fisher information matrix can be neatly represented as conditional expectations. Using the INAR(2) speci?cation with binomial thinning and Poisson innovations, we examine both the asymptotic e?ciency and ?nite sample properties of the ML estimator in relation to the widely used conditional least
squares (CLS) and Yule–Walker (YW) estimators. We conclude that, if the Poisson assumption can be justi?ed, there are substantial gains to be had from using ML especially when the thinning parameters are large.
Resumo:
It is shown that, when expressing arguments in terms of their logarithms, the Laplace transform of a function is related to the antiderivative of this function by a simple convolution. This allows efficient numerical computations of moment generating functions of positive random variables and their inversion. The application of the method is straightforward, apart from the necessity to implement it using high-precision arithmetics. In numerical examples the approach is demonstrated to be particularly useful for distributions with heavy tails, Such as lognormal, Weibull, or Pareto distributions, which are otherwise difficult to handle. The computational efficiency compared to other methods is demonstrated for an M/G/1 queueing problem.
Resumo:
An algorithm is presented which generates pairs of oscillatory random time series which have identical periodograms but differ in the number of oscillations. This result indicates the intrinsic limitations of spectral methods when it comes to the task of measuring frequencies. Other examples, one from medicine and one from bifurcation theory, are given, which also exhibit these limitations of spectral methods. For two methods of spectral estimation it is verified that the particular way end points are treated, which is specific to each method, is, for long enough time series, not relevant for the main result.
Resumo:
Food webs represent trophic (feeding) interactions in ecosystems. Since the late 1970s, it has been recognized that food-webs have a surprisingly close relationship to interval graphs. One interpretation of food-web intervality is that trophic niche space is low-dimensional, meaning that the trophic character of a species can be expressed by a single or at most a few quantitative traits. In a companion paper we demonstrated, by simulating a minimal food-web model, that food webs are also expected to be interval when niche-space is high-dimensional. Here we characterize the fundamental mechanisms underlying this phenomenon by proving a set of rigorous conditions for food-web intervality in high-dimensional niche spaces. Our results apply to a large class of food-web models, including the special case previously studied numerically.
Resumo:
Over the past ten years, a variety of microRNA target prediction methods has been developed, and many of the methods are constantly improved and adapted to recent insights into miRNA-mRNA interactions. In a typical scenario, different methods return different rankings of putative targets, even if the ranking is reduced to selected mRNAs that are related to a specific disease or cell type. For the experimental validation it is then difficult to decide in which order to process the predicted miRNA-mRNA bindings, since each validation is a laborious task and therefore only a limited number of mRNAs can be analysed. We propose a new ranking scheme that combines ranked predictions from several methods and - unlike standard thresholding methods - utilises the concept of Pareto fronts as defined in multi-objective optimisation. In the present study, we attempt a proof of concept by applying the new ranking scheme to hsa-miR-21, hsa-miR-125b, and hsa-miR-373 and prediction scores supplied by PITA and RNAhybrid. The scores are interpreted as a two-objective optimisation problem, and the elements of the Pareto front are ranked by the STarMir score with a subsequent re-calculation of the Pareto front after removal of the top-ranked mRNA from the basic set of prediction scores. The method is evaluated on validated targets of the three miRNA, and the ranking is compared to scores from DIANA-microT and TargetScan. We observed that the new ranking method performs well and consistent, and the first validated targets are elements of Pareto fronts at a relatively early stage of the recurrent procedure. which encourages further research towards a higher-dimensional analysis of Pareto fronts. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Corrigendum Vol. 30, Issue 2, 259, Article first published online: 15 MAR 2009 to correct the order of authors names: Bu R., K. Hadri, and B. McCabe.
Resumo:
The stochastic nature of oil price fluctuations is investigated over a twelve-year period, borrowing feedback from an existing database (USA Energy Information Administration database, available online). We evaluate the scaling exponents of the fluctuations by employing different statistical analysis methods, namely rescaled range analysis (R/S), scale windowed variance analysis (SWV) and the generalized Hurst exponent (GH) method. Relying on the scaling exponents obtained, we apply a rescaling procedure to investigate the complex characteristics of the probability density functions (PDFs) dominating oil price fluctuations. It is found that PDFs exhibit scale invariance, and in fact collapse onto a single curve when increments are measured over microscales (typically less than 30 days). The time evolution of the distributions is well fitted by a Levy-type stable distribution. The relevance of a Levy distribution is made plausible by a simple model of nonlinear transfer. Our results also exhibit a degree of multifractality as the PDFs change and converge toward to a Gaussian distribution at the macroscales.