37 resultados para visible and infrared spectroscopy
Resumo:
Labelling of silica grains and energy dispersive X-ray spectroscopy (EDX) in a TEM-FEG (field emission gun) were used to demonstrate the migration of Pt(NH3)(4)(2+) species from one grain to another during Pt/SiO2 catalyst preparation by the ion-exchange procedure.
Resumo:
In this paper we demonstrate that the effect of aromatic C-F substitution in ligands does not always abide by conventional wisdom for ligand design to enhance sensitisation for visible lanthanide emission, in contrast with NIR emission for which the same effect coupled with shell formation leads to unprecedented long luminescence lifetimes. We have chosen an imidodiphosphinate ligand, N-{P,P-di-(pentafluorophinoyl)}-P,P-dipentafluoro-phenylphosphinimidic acid (HF(20)tpip), to form ideal fluorinated shells about all visible- and NIR-emitting lanthanides. The shell, formed by three ligands, comprises twelve fully fluorinated aryl sensitiser groups, yet no-high energy X-H vibrations that quench lanthanide emission. The synthesis, full characterisation including X-ray and NMR analysis as well as the photophysical properties of the emissive complexes [Ln(F(20)tpip)(3)], in which Ln=Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Y, Gd, are reported. The photophysical results contrast previous studies, in which fluorination of alkyl chains tends to lead to more emissive lanthanide complexes for both visible and NIR emission. Analysis of the fluorescence properties of the HF(20)tpip and [Gd(F(20)tpip)(3)] reveals that there is a low-lying state at around 715 nm that is responsible for partially quenching of the signal of the visible emitting lanthanides and we attribute it to a pi-sigma* state. However, all visible emitting lanthanides have long lifetimes and unexpectedly the [Dy(F(20)tpip)(3)] complex shows a lifetime of 0.3 ms, indicating that the elimination of high-energy vibrations from the ligand framework is particularly favourable for Dy. The NIR emitting lanthanides show strong emission signals in powder and solution with unprecedented lifetimes. The luminescence lifetimes of [Nd(F(20)tpip)(3)], [Er(F(20)tpip)(3)] and [Yb(F(20)tpip)(3)] in deuteurated acetonitrile are 44, 741 and 1111 mu s. The highest value observed for the [Yb(F(20)tpip)(3)] complex is more than half the value of the Yb ion radiative lifetime.
Resumo:
Thomson scattering from laser-induced plasma in atmospheric helium was used to obtain temporally and spatially resolved electron temperature and density profiles. Electron density measurements at 5 s after breakdown are compared with those derived from the separation of the allowed and forbidden components of the 447.1 nm He I line. Plasma is created using 9 ns, 140 mJ pulses from Nd:YAG laser at 1064 nm. Electron densities of ~5 × 10 cm are in good agreement with Thomson scattering measurements, benchmarking this emission line as a useful diagnostic for high density plasmas. © 2011 American Institute of Physics.
Resumo:
We present contemporaneous optical and infrared (IR) photometric observations of the Type IIn SN 1998S covering the period between 11 and 146 d after discovery. The IR data constitute the first ever IR light curves of a Type IIn supernova. We use blackbody and spline fits to the photometry to examine the luminosity evolution. During the first 2-3 months, the luminosity is dominated by the release of shock-deposited energy in the ejecta. After similar to 100 d the luminosity is powered mostly by the deposition of radioactive decay energy from 0.15 +/-0.05 M-. of Ni-56 which was produced in the explosion. We also report the discovery of an astonishingly high IR excess, K-L'=2.5, that was present at day 130. We interpret this as being due to thermal emission from dust grains in the vicinity of the supernova. We argue that to produce such a high IR luminosity so soon after the explosion, the dust must be pre-existing and so is located in the circumstellar medium of the progenitor. The dust could be heated either by the UV/optical flash (IR echo) or by the X-rays from the interaction of the ejecta with the circumstellar material.
Resumo:
The phase behavior of two types of poly(ethylene oxide)/poly(propylene oxide) (PEO/PPO) copolymers in aqueous solutions was studied by light scattering, viscometry, and infrared spectroscopy. Both the reverse poloxamer (Pluronic 10R5) and the star type poloxamine (Tetronic 90R4) have practically the same PEO/PPO ratio with their hydrophobic blocks (PPO) located in the outer part. The temperature-composition phase diagrams show that both 10R5 and 90R4 tend to form aggregates in water. Up to four different phases can be detected in the case of Tetronic 90R4 for each temperature: unimers, random networks, micellar networks, and macrophase separation. Viscometric and infrared measurements complemented the results obtained by light scattering and visual inspection.
Resumo:
In this extended introductory essay, Catherine Gander and Sarah Garland suggest new ways of looking at the correspondences between visual and verbal practices to consider their material and conceptual connections in a specifically American set of histories, contexts and interpretive traditions. Tracing a lineage of experiential philosophy that is grounded in the overturning of a Cartesian mind/body split, the authors argue for pluralistic perspectives on intermedial innovations that situate embodied and imaginative reader-viewer response as vital to the life of the artwork. Gander and Garland chart two main strands to this approach: the pragmatist strain of American aesthetics and social politics, rooted in the essays of transcendentalist Ralph Waldo Emerson and emanating from the writings of John Dewey and William James; and the conceptualist strain of French-American Marcel Duchamp, whose ground-breaking ideas both positioned the artwork as a phenomenological construction and liberated the artist from established methods of practice and discourse. The ‘imagetext’ (after W. J. T. Mitchell) is therefore, argue Gander and Garland, a site consisting of far more than word and image – but a living assemblage of language, idea, thing, cognition, affect and shared experience.
Resumo:
With advancements in the development of visible light responsive catalysts for H2 production frequently being reported, photocatalytic water splitting has become an attractive method as a potential ‘solar fuel generator’. The development of novel photo reactors which can enhance the potential of such catalyst, however, is rarely reported. This is particularly important as many reactor configurations are mass transport limited, which in term limits the efficiency of more effective photocatalysts in larger scale applications. This paper describes the performance of a novel fluidised photo reactor for the production of H2 over two catalysts under UV-Visible light and natural solar illumination. Catalysts Pt-C3N4 and NaTaO3.La were dispersed in the reactor and the rate of H2 was determined by GC-TCD analysis of the gas headspace. The unit was an annular reactor constructed from stainless steel 316 and quartz glass with a propeller located in the base to control fluidisation of powder catalysts. Reactor properties such as propeller rotational speed were found to enhance the photo activity of the system through the elimination of mass transport limitations and increasing light penetration. The optimum conditions for H2 evolution were found to be a propeller rotational speed of 1035 rpm and 144 W of UV-Visible irradiation, which produced a rate of 89 µmol h-1 g-1 over Pt-C3N4. Solar irradiation was provided by the George Ellery Hale Solar Telescope, located at the California Institute of Technology.
Resumo:
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
Resumo:
Dodecatungsto-silicic H4SiW12O40 and -phosphoric acids H3PW12O40 were deposited on silica by a classical impregnation technique. The resulting materials were studied by in situ Raman and infrared spectroscopy, XPS and by solid-state H-1 MAS NMR as a function of their dehydroxylation temperature. The data show that in the case of H3PW12O40 three silanol groups are protonated while in the case of H4SiW12O40 at least one acidic proton remains. Upon heating this proton reacts leading to a disordered structure and a broadening of the W-O Raman bands.