199 resultados para virus virulence
Resumo:
This is a joint study with Stuart Ralson's group on Paget's disease. For the last decade I have played a leading role in the evaluation of the postulated role of paramyxoviruses in Paget's Disease of Bone (PDB).
Resumo:
Replication of the giant RNA genome of severe acute respiratory syndrome (SARS) coronavirus (CoV) and synthesis of as many as eight subgenomic (sg) mRNAs are mediated by a viral replicase-transcriptase of outstanding complexity that includes an essential endoribonuclease activity. Here, we show that the CoV replicative machinery, unlike that of other RNA viruses, also uses an exoribonuclease (ExoN) activity, which is associated with nonstructural protein (nsp) 14. Bacterially expressed forms of SARS-CoV nsp14 were shown to act on both ssRNAs and dsRNAs in a 3'5' direction. The activity depended on residues that are conserved in the DEDD exonuclease superfamily. The protein did not hydrolyze DNA or ribose-2'-O-methylated RNA substrates and required divalent metal ions for activity. A range of 5'-labeled ssRNA substrates were processed to final products of 8–12 nucleotides. When part of dsRNA or in the presence of nonlabeled dsRNA, the 5'-labeled RNA substrates were processed to significantly smaller products, indicating that binding to dsRNA in cis or trans modulates the exonucleolytic activity of nsp14. Characterization of human CoV 229E ExoN active-site mutants revealed severe defects in viral RNA synthesis, and no viable virus could be recovered. Besides strongly reduced genome replication, specific defects in sg RNA synthesis, such as aberrant sizes of specific sg RNAs and changes in the molar ratios between individual sg RNA species, were observed. Taken together, the study identifies an RNA virus ExoN activity that is involved in the synthesis of multiple RNAs from the exceptionally large genomic RNA templates of CoVs.
Resumo:
The secretion and activation of the major cathepsin L1 cysteine protease involved in the virulence of the helminth pathogen Fasciola hepatica was investigated. Only the fully processed and active mature enzyme can be detected in medium in which adult F. hepatica are cultured. However, immunocytochemical studies revealed that the inactive procathepsin L1 is packaged in secretory vesicles of epithelial cells that line the parasite gut. These observations suggest that processing and activation of procathepsin L1 occurs following secretion from these cells into the acidic gut lumen. Expression of the 37-kDa procathepsin L1 in Pichia pastoris showed that an intermolecular processing event within a conserved GXNXFXD motif in the propeptide generates an active 30-kDa intermediate form. Further activation of the enzyme was initiated by decreasing the pH to 5.0 and involved the progressive processing of the 37 and 30-kDa forms to other intermediates and finally to a fully mature 24.5 kDa cathepsin L with an additional 1 or 2 amino acids. An active site mutant procathepsin L, constructed by replacing the Cys26 with Gly26, failed to autoprocess. However, [Gly26]procathepsin L was processed by exogenous wild-type cathepsin L to a mature enzyme plus 10 amino acids attached to the N terminus. This exogenous processing occurred without the formation of a 30-kDa intermediate form. The results indicate that activation of procathepsin L1 by removal of the propeptide can occur by different pathways, and that this takes place within the parasite gut where the protease functions in food digestion and from where it is liberated as an active enzyme for additional extracorporeal roles.
Resumo:
A proportion of Hodgkin lymphoma (HL) cases are causally associated with the Epstein-Barr virus (EBV) but the aetiology of the remaining cases remains obscure. Over the last 3 decades several studies have found an association between HL and measles virus (MV) including a recent cohort study describing the detection of MV antigens in Hodgkin and Reed-Sternberg cells, the tumour cells in HL. In the present study we looked at the relationship between history of MV infection and risk of developing HL in a population-based, case/control study of HL. In addition we used immunohistochemistry and RT-PCR to look for direct evidence of MV in HL biopsies. There was no significant difference in the proportion of cases reporting previous measles compared to controls in the entire data set or when young adults were considered separately. Using a robust immunohistochemical assay for MV infection, we failed to find evidence of MV in biopsies from 97 cases of HL and RT-PCR studies similarly gave negative results. This study therefore provides no evidence that MV is directly involved in the development of HL. However, when age at first reported MV infection was investigated, significant differences emerged with children infected before school-age having higher risk, especially of EBV-ve HL, when compared with children infected at older ages; the interpretation of these latter results is unclear.