71 resultados para unified theories and models of strong and electroweak
Resumo:
Homology modeling was used to build 3D models of the N-methyl-D-aspartate (NMDA) receptor glycine binding site on the basis of an X-ray structure of the water-soluble AMPA-sensitive receptor. The docking of agonists and antagonists to these models was used to reveal binding modes of ligands and to explain known structure-activity relationships. Two types of quantitative models, 3D-QSAR/CoMFA and a regression model based on docking energies, were built for antagonists (derivatives of 4-hydroxy-2-quinolone, quinoxaline-2,3-dione, and related compounds). The CoMFA steric and electrostatic maps were superimposed on the homology-based model, and a close correspondence was marked. The derived computational models have permitted the evaluation of the structural features crucial for high glycine binding site affinity and are important for the design of new ligands.
Resumo:
The two critical forms of dementia are Alzheimer's disease (AD) and vascular dementia (VD).The alterations of Ca2+/calmodulin/CaMKII/CaV1.2 signaling in AD and VD have not been well elucidated. Here we have demonstrated changes in the levels of CaV1.2, calmodulin, p-CaMKII, p-CREB and BDNF proteins by Western blot analysis and the co-localization of p-CaMKII/CaV1.2 by double-labeling immunofluorescence in the hippocampus of APP/PS1 mice and VD gerbils. Additionally, expression of these proteins and intracellular calcium levels were examined in cultured neurons treated with Aß1–42. The expression of CaV1.2 protein was increased in VD gerbils and in cultured neurons but decreased in APP/PS1 mice; the expression of calmodulin protein was increased in APP/PS1 mice and VD gerbils; levels of p-CaMKII, p-CREB and BDNF proteins were decreased in AD and VD models. The number of neurons in which p-CaMKII and CaV1.2 were co-localized, was decreased in the CA1 and CA3 regions in two models. Intracellular calcium was increased in the cultured neurons treated with Aß1–42. Collectively, our results suggest that the alterations in CaV1.2, calmodulin, p-CaMKII, p-CREB and BDNF can be reflective of an involvement in the impairment in memory and cognition in AD and VD models.
Resumo:
Current conceptual models of reciprocal interactions linking soil structure, plants and arbuscular mycorrhizal fungi emphasise positive feedbacks among the components of the system. However, dynamical systems with high dimensionality and several positive feedbacks (i.e. mutualism) are prone to instability. Further, organisms such as arbuscular mycorrhizal fungi (AMF) are obligate biotrophs of plants and are considered major biological agents in soil aggregate stabilization. With these considerations in mind, we developed dynamical models of soil ecosystems that reflect the main features of current conceptual models and empirical data, especially positive feedbacks and linear interactions among plants, AMF and the component of soil structure dependent on aggregates. We found that systems become increasingly unstable the more positive effects with Type I functional response (i.e., the growth rate of a mutualist is modified by the density of its partner through linear proportionality) are added to the model, to the point that increasing the realism of models by adding linear effects produces the most unstable systems. The present theoretical analysis thus offers a framework for modelling and suggests new directions for experimental studies on the interrelationship between soil structure, plants and AMF. Non-linearity in functional responses, spatial and temporal heterogeneity, and indirect effects can be invoked on a theoretical basis and experimentally tested in laboratory and field experiments in order to account for and buffer the local instability of the simplest of current scenarios. This first model presented here may generate interest in more explicitly representing the role of biota in soil physical structure, a phenomenon that is typically viewed in a more process- and management-focused context. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The operant learning theory account of behaviors of clinical significance in people with intellectual disability (ID) has dominated the field for nearly 50 years. However, in the last two decades, there has been a substantial increase in published research that describes the behavioral phenotypes of genetic disorders and shows that behaviors such as self-injury and aggression are more common in some syndromes than might be expected given group characteristics. These cross-syndrome differences in prevalence warrant explanation, not least because this observation challenges an exclusively operant learning theory account. To explore this possible conflict between theoretical account and empirical observation, we describe the genetic cause and physical, social, cognitive and behavioral phenotypes of four disorders associated with ID (Angleman, Cornelia de Lange, Prader-Willi and Smith-Magenis syndromes) and focus on the behaviors of clinical significance in each syndrome. For each syndrome we then describe a model of the interactions between physical characteristics, cognitive and motivational endophenotypes and environmental factors (including operant reinforcement) to account for the resultant behavioral phenotype. In each syndrome it is possible to identify pathways from gene to physical phenotype to cognitive or motivational endophenotype to behavior to environment and back to behavior. We identify the implications of these models for responsive and early intervention and the challenges for research in this area. We identify a pressing need for meaningful dialog between different disciplines to construct better informed models that can incorporate all relevant and robust empirical evidence.
Resumo:
In a companion paper, Seitenzahl et al. have presented a set of three-dimensional delayed detonation models for thermonuclear explosions of near-Chandrasekhar-mass white dwarfs (WDs). Here,we present multidimensional radiative transfer simulations that provide synthetic light curves and spectra for those models. The model sequence explores both changes in the strength of the deflagration phase (which is controlled by the ignition configuration in our models) and the WD central density. In agreement with previous studies, we find that the strength of the deflagration significantly affects the explosion and the observables. Variations in the central density also have an influence on both brightness and colour, but overall it is a secondary parameter in our set of models. In many respects, the models yield a good match to the observed properties of normal Type Ia supernovae (SNe Ia): peak brightness, rise/decline time-scales and synthetic spectra are all in reasonable agreement. There are, however, several differences. In particular, the models are systematically too red around maximum light, manifest spectral line velocities that are a little too high and yield I-band light curves that do not match observations. Although some of these discrepancies may simply relate to approximations made in the modelling, some pose real challenges to the models. If viewed as a complete sequence, our models do not reproduce the observed light-curve width- luminosity relation (WLR) of SNe Ia: all our models show rather similar B-band decline rates, irrespective of peak brightness. This suggests that simple variations in the strength of the deflagration phase in Chandrasekhar-mass deflagration-to-detonation models do not readily explain the observed diversity of normal SNe Ia. This may imply that some other parameter within the Chandrasekhar-mass paradigm is key to the WLR, or that a substantial fraction of normal SNe Ia arise from an alternative explosion scenario.
Resumo:
Background: Medical Research Council (MRC) guidelines recommend applying theory within complex interventions to explain how behaviour change occurs. Guidelines endorse self-management of chronic low back pain (CLBP) and osteoarthritis (OA), but evidence for its effectiveness is weak. Objective: This literature review aimed to determine the use of behaviour change theory and techniques within randomised controlled trials of group-based self-management programmes for chronic musculoskeletal pain, specifically CLBP and OA. Methods: A two-phase search strategy of electronic databases was used to identify systematic reviews and studies relevant to this area. Articles were coded for their use of behaviour change theory, and the number of behaviour change techniques (BCTs) was identified using a 93-item taxonomy, Taxonomy (v1). Results: 25 articles of 22 studies met the inclusion criteria, of which only three reported having based their intervention on theory, and all used Social Cognitive Theory. A total of 33 BCTs were coded across all articles with the most commonly identified techniques being '. instruction on how to perform the behaviour', '. demonstration of the behaviour', '. behavioural practice', '. credible source', '. graded tasks' and '. body changes'. Conclusion: Results demonstrate that theoretically driven research within group based self-management programmes for chronic musculoskeletal pain is lacking, or is poorly reported. Future research that follows recommended guidelines regarding the use of theory in study design and reporting is warranted.
Resumo:
Despite compelling preclinical data in colorectal cancer (CRC), the efficacy of HDACIs has been disappointing in the clinic. The goal of this study was to evaluate the effectiveness of vorinostat and panobinostat in a dose- and exposure-dependent manner in order to better understand the dynamics of drug action and antitumor efficacy. In a standard 72 h drug exposure MTS assay, notable concentration-dependent antiproliferative effects were observed in the IC50 range of 1.2-2.8 μmol/L for vorinostat and 5.1-17.5 nmol/L for panobinostat. However, shorter clinically relevant exposures of 3 or 6 h failed to elicit any significant growth inhibition and in most cases a >24 h exposure to vorinostat or panobinostat was required to induce a sigmoidal dose-response. Similar results were observed in colony formation assays where ≥ 24 h of exposure was required to effectively reduce colony formation. Induction of acetyl-H3, acetyl-H4 and p21 by vorinostat were transient and rapidly reversed within 12 h of drug removal. In contrast, panobinostat-induced acetyl-H3, acetyl-H4, and p21 persisted for 48 h after an initial 3 h exposure. Treatment of HCT116 xenografts with panobinostat induced significant increases in acetyl-H3 and downregulation of thymidylate synthase after treatment. Although HDACIs exert both potent growth inhibition and cytotoxic effects when CRC cells were exposed to drug for ≥ 24 h, these cells demonstrate an inherent ability to survive HDACI concentrations and exposure times that exceed those clinically achievable. Continued efforts to develop novel HDACIs with improved pharmacokinetics/phamacodynamics, enhanced intratumoral delivery and class/isoform-specificity are needed to improve the therapeutic potential of HDACIs and HDACI-based combination regimens in solid tumors.
Resumo:
Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in pre-clinical models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the anti-microbial effect of MSC in vivo depends on their modulation of macrophage phagocytic activity which occurs through mitochondrial transfer. We established that selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposomal clodronate resulted in complete abrogation of MSC anti-microbial effect in the in vivo model of E.coli pneumonia. Furthermore, we showed that MSC administration was associated with enhanced AM phagocytosis in vivo. We showed that direct co-culture of MSC with monocyte-derived macrophages (MDMs) enhanced their phagocytic capacity. By fluorescent imaging and flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages which occurred at least partially through TNT-like structures. We also detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally, partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on macrophage phagocytosis in vitro and the anti-microbial effect of MSC in vivo.
Collectively, this work for the first time demonstrates that mitochondrial transfer from MSC to innate immune cells leads to enhancement in phagocytic activity and reveals an important novel mechanism for the anti-microbial effect of MSC in ARDS.