155 resultados para titanium implants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dielectronic recombination (DR) has been studied in highly charged He-like Ti ions using an electron beam ion trap. X-rays emitted from radiative recombination (RR) and DR were observed as the electron beam energy was scanned through the resonances. Differential DR resonant strengths were determined by normalizing the DR x-ray intensity to the RR intensity using theoretical RR cross sections. KLn (2 less than or equal to n less than or equal to 5) resonant strengths were determined for He-like Ti ions. The differential resonant strengths were calibrated without reference to any theoretical DR calculations while the electron energy scale was derived with reference to the well-known energy for ionization of the He-like and H-like ions from the ground state. Calibration in this way facilitates a more exacting comparison between theory and experiment than has been reported previously. To facilitate this comparison, total and differential theoretical resonance strengths were calculated. These calculations were found to be in good agreement with the measured results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There can be wide variation in the level of oral/aural language ability that prelingually hearing-impaired children develop after cochlear implantation. Automatic perceptual processing mechanisms have come under increasing scrutiny in attempts to explain this variation. Using mismatch negativity methods, this study explored associations between auditory sensory memory mechanisms and verbal working memory function in children with cochlear implants and a group of hearing controls of similar age. Whilst clear relationships were observed in the hearing children between mismatch activation and working memory measures, this association appeared to be disrupted in the implant children. These findings would fit with the proposal that early auditory deprivation and a degraded auditory signal can cause changes in the processes underpinning the development of oral/aural language skills in prelingually hearing-impaired children with cochlear implants and thus alter their developmental trajectory

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the formulation and physicochemical characterization of poly(acrylic acid) (PAA) organogels, designed as bioactive implants for improved treatment of infectious diseases of the oral cavity. Organogels were formulated containing a range of concentrations of PAA (3-10% w/w) and metronidazole (2 or 5% w/w, representing a model antimicrobial agent) in different nonaqueous solvents, namely, glycerol (Gly), polyethylene glycol (PEG 400), or propylene glycol (PG). Characterization of the organogels was performed using flow rheometry, compressional analysis, oscillatory rheometry, in vitro mucoadhesion, moisture uptake, and drug release, methods that provide information pertaining to the nonclinical and clinical use of these systems. Increasing the concentration of PAA significantly increased the consistency, compressibility, storage modulus, loss modulus, dynamic viscosity, mucoadhesion, and the rate of drug release. These observations may be accredited to enhanced molecular polymer entanglement. In addition, the choice of solvent directly affected the physicochemical parameters of the organogels, with noticeable differences observed between the three solvents examined. These differences were accredited to the nature of the interaction of PAA with each solvent and, importantly, the density of the resultant physical cross-links. Good correlation was observed between the viscoelastic properties and drug release, with the exception of glycerol-based formulations containing 5 and 10% w/w PAA. This disparity was due to excessive swelling during the dissolution analysis. Ideally, formulations should exhibit controlled drug release, high viscoelasticity, and mucoadhesion, but should flow under minimal stresses. Based on these criteria, PEG 400-based organogels composed of 5% or 10% w/w PAA exhibited suitable physicochemical properties and are suggested to be a potentially interesting strategy for use as bioactive implants designed for use in the oral cavity. © 2008 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dielectronic recombination of hydrogenlike ions an intermediate doubly excited heliumlike ion is formed. Since the K shell is empty, both excited electrons can decay sequentially to the ground state. In this paper we analyze the x-ray radiation emitted from doubly and singly excited heliumlike titanium ions produced inside the Tokyo electron beam ion trap. Theoretical population densities of the singly excited states after the first transition and the transition probabilities of these states into the ground state were also calculated. This allowed theoretical branching ratios to be determined for each manifold. These branching ratios are compared to the experimentally obtained x-ray distribution by fitting across the relevant peak using a convolution of the theoretically obtained resonance strengths and energies. By taking into account 2E1 transitions which are not observed in the experiment, the measured and calculated ratios agree well. This method provides a valuable insight into the transition dynamics of excited highly charged ions.