22 resultados para thermoplastic polcurethane (TPU)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoplastic composites are likely to emerge as the preferred solution for meeting the high-volume production demands of passenger road vehicles. Substantial effort is currently being directed towards the development of new modelling techniques to reduce the extent of costly and time consuming physical testing. Developing a high-fidelity numerical model to predict the crush behaviour of composite laminates is dependent on the accurate measurement of material properties as well as a thorough understanding of damage mechanisms associated with crush events. This paper details the manufacture, testing and modelling of self-supporting corrugated-shaped thermoplastic composite specimens for crashworthiness assessment. These specimens demonstrated a 57.3% higher specific energy absorption compared to identical specimen made from thermoset composites. The corresponding damage mechanisms were investigated in-situ using digital microscopy and post analysed using Scanning Electron Microscopy (SEM). Splaying and fragmentation modes were the 2 primary failure modes involving fibre breakage, matrix cracking and delamination. A mesoscale composite damage model, with new non-linear shear constitutive laws, which combines a range of novel techniques to accurately capture the material response under crushing, is presented. The force-displacement curves, damage parameter maps and dissipated energy, obtained from the numerical analysis, are shown to be in a good qualitative and quantitative agreement with experimental results. The proposed approach could significantly reduce the extent of physical testing required in the development of crashworthy structures.  

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the solubility of mefenamic acid (MA), a highly cohesive, poorly water-soluble drug in a copolymer of polyoxyethylene–polyoxypropylene (Lutrol F681), and to understand the effect drug polymer solubility has on in vitro dissolution of MA. Solid dispersions (SD) of MA were prepared by a hot melt method, using Lutrol F681 as a thermoplastic polymeric platform. High-speed differential scanning calorimetry (Hyper-DSC), Raman spectroscopy, powder X-ray diffractometry (PXRD) and hot-stage/?uorescence microscopy were used to assess the solubility of the drug in molten and solid polymer. Drug dissolution studies were subsequently conducted on single-phase solid solutions and biphasic SD using phosphate buffer pH 6.8 as dissolution media. Solubility investigations using Hyper-DSC, Raman spectroscopy and hot-stage microscopy suggested MA was soluble in molten Lutrol F681 up to a concentration of 35% (w/w). Conversely, the solubility in the solidstate matrix was limited to<15% (w/w); determined by Raman spectroscopy, PXRD and ?uorescence microscopy. As expected the dissolution properties of MA were signi?cantly in?uenced by the solubility of the drug in the polymer matrix. At a concentration of 10% (w/w) MA (a single phase solid solution) dissolution of MA in phosphate buffer 6.8 was rapid, whereas at a concentration of 50% (w/w) MA (biphasic SD) dissolution was signi?cantly slower. This study has clearly demonstrated the complexity of drug– polymer binary blends and in particular de?ning the solubility of a drug within a polymeric platform. Moreover, this investigation has demonstrated the signi?cant effect drug solubility within a polymeric matrix has upon the in vitro dissolution properties of solid polymer/drug binary blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel CO2 intelligent pigment is incorporated into a thermoplastic polymer to create a long-lived CO2-sensitive plastic film which is characterised and then compared to a traditional solvent-based CO2 indicator film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following the successful development of long-acting steroid-releasing vaginal ring devices for treatment of menopausal symptoms and contraception, there is now considerable interest in applying similar devices to the controlled release of microbicides against HIV. In this review article, the vaginal ring concept is first considered within the wider context of the early advances in controlled release technology, before describing the various types of ring device available today. The remainder of the article highlights the key developments in HIV microbicide-releasing vaginal rings, with a particular focus on the dapivirine ring that is presently in late-stage clinical testing. © 2012 Malcolm et al, publisher and licensee Dove Medical Press Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pre-consolidated carbon fibre-reinforced polyphenylene sulphide (CF/PPS) laminates were
thermoformed into V-shaped parts via designed out of autoclave thermoforming experiments.
The different processing conditions tested in the experiment have resulted in final
part angles whose differences ranged from 2.087 to 3.431 from the original mould angle.
The test results show that processing conditions influenced finished part dimensions as the
final sample angles were found to decrease relative to the tooling dimensions, as mould
temperature increases. Higher mould temperature conditions produce thinner parts due
to the thermal expansion of mould tools. The mould temperature of 170C, which can
produce parts with high degree of crystallinity as well as small size of crystal, has been
established as the optimal thermoforming condition for CF/PPS composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene, due to its outstanding properties, has become the topic of much research activity in recent years. Much of that work has been on a laboratory scale however, if we are to introduce graphene into real product applications it is necessary to examine how the material behaves under industrial processing conditions. In this paper the melt processing of polyamide 6/graphene nanoplatelet composites via twin screw extrusion is investigated and structure–property relationships are examined for mechanical and electrical properties. Graphene nanoplatelets (GNPs) with two aspect ratios (700 and 1000) were used in order to examine the influence of particle dimensions on composite properties. It was found that the introduction of GNPs had a nucleating effect on polyamide 6 (PA6) crystallization and substantially increased crystallinity by up to 120% for a 20% loading in PA6. A small increase in crystallinity was observed when extruder screw speed increased from 50 rpm to 200 rpm which could be attributed to better dispersion and more nucleation sites for crystallization. A maximum enhancement of 412% in Young's modulus was achieved at 20 wt% loading of GNPs. This is the highest reported enhancement in modulus achieved to date for a melt mixed thermoplastic/GNPs composite. A further result of importance here is that the modulus continued to increase as the loading of GNPs increased even at 20 wt% loading and results are in excellent agreement with theoretical predictions for modulus enhancement. Electrical percolation was achieved between 10–15 wt% loading for both aspect ratios of GNPs with an increase in conductivity of approximately 6 orders of magnitude compared to the unfilled PA6.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of the latest generation of wide-body carbon-fibre composite passenger aircraft has heralded a new era in the utilisation of these materials. The premise of superior specific strength and stiffness, corrosion and fatigue resistance, is tempered by high development costs, slow production rates and lengthy and expensive certification programmes. Substantial effort is currently being directed towards the development of new modelling and simulation tools, at all levels of the development cycle, to mitigate these shortcomings. One of the primary challenges is to reduce the extent of physical testing, in the certification process, by adopting a ‘certification by simulation’ approach. In essence, this aspirational objective requires the ability to reliably predict the evolution and progression of damage in composites. The aerospace industry has been at the forefront of developing advanced composites modelling tools. As the automotive industry transitions towards the increased use of composites in mass-produced vehicles, similar challenges in the modelling of composites will need to be addressed, particularly in the reliable prediction of crashworthiness. While thermoset composites have dominated the aerospace industry, thermoplastics composites are likely to emerge as the preferred solution for meeting the high-volume production demands of passenger road vehicles. This keynote presentation will outline recent progress and current challenges in the development of finite-element-based predictive modelling tools for capturing impact damage, residual strength and energy absorption capacity of thermoset and thermoplastic composites for crashworthiness assessments.