51 resultados para thermal properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi-walled carbon nanotube (MWCNT)/polymethyl methacrylate (PMMA) composites with loadings ranging from 0.1 to 1.0 wt.% were prepared for use as bone cement. Unfunctionalised, carboxyl and amine functionalised MWCNT were used. Thermal properties were characterised in accordance with the International Standard for acrylic cements, ISO 5833:2002. The rate of reaction exotherm generated and thermal necrosis index (TNI) values were calculated. Polymerisation kinetics were characterised using parallel plate rheology and the exotherm during polymerisation was reduced by ˜4–34%, as a consequence of the MWCNT thermal conductivity. The rate of reaction was significantly altered, such that the setting times of the cements were extended (˜3–24%). Consequently, significant decreases in TNI values (ranging from 3% to 99%) were recorded, which could reduce the exothermic temperatures experienced in vivo and therefore prevent the likelihood of polymerising PMMA cement causing thermally-induced bone tissue necrosis. Thermal data was supported by the rheological characterisation results. Onset of polymerisation for PMMA cement exhibited a strong linear increase as a function of MWCNT loading, however, polymer gelation was not affected to the same degree. It is proposed that the chemically functionalised MWCNT altered PMMA bone cement polymerisation kinetics, reducing the rate of polymerisation, and hence, the reaction exotherm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hemp-lime concrete is a sustainable alternative to standard building wall materials, with low associated embodied energy. It exhibits good hygric, acoustic and thermal properties, making it an exciting, sustainable building envelope material. When cast in temporary shuttering around a timber frame, it exhibits lower thermal conductivity than concrete, and consequently achieves low U-values in a primarily mono-material wall construction. Although cast relatively thick hemp-lime walls do not generally achieve the low U-values stipulated in building regulations. However assessment of its thermal performance through evaluation of its resistance to thermal transfer alone, underestimates its true thermal quality. The thermal inertia, or reluctance of the wall to change its temperature when exposed to changing environmental temperatures, also has a significant impact on the thermal quality of the wall, the thermal comfort of the interior space and energy consumption due to space heating. With a focus on energy reduction in buildings, regulations emphasise thermal resistance to heat transfer with only less focus on thermal inertia or storage benefits due to thermal mass. This paper investigates dynamic thermal responsiveness in hemp-lime concrete walls. It reports the influence of thermal conductivity, density and specific heat through analysis of steady state and transient heat transfer, in the walls. A novel hot-box design which isolates the conductive heat flow is used, and compared with tests in standard hot-boxes. Thermal diffusivity and effusivity are evaluated, using experimentally measured conductivity, based on analytical relationships. Experimental results evident that hemp-lime exhibits high thermal inertia. They show the thermal inertia characteristics compensate for any limitations in the thermal resistance of the construction material. When viewed together the thermal resistance and mass characteristics of hemp-lime are appropriate to maintain comfortable thermal indoor conditions and low energy operation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new microfluidic-based approach to measuring liquid thermal conductivity is developed to address the requirement in many practical applications for measurements using small (microlitre) sample size and integration into a compact device. The approach also gives the possibility of high-throughput testing. A resistance heater and temperature sensor are incorporated into a glass microfluidic chip to allow transmission and detection of a planar thermal wave crossing a thin layer of the sample. The device is designed so that heat transfer is locally one-dimensional during a short initial time period. This allows the detected temperature transient to be separated into two distinct components: a short-time, purely one-dimensional part from which sample thermal conductivity can be determined and a remaining long-time part containing the effects of three-dimensionality and of the finite size of surrounding thermal reservoirs. Identification of the one-dimensional component yields a steady temperature difference from which sample thermal conductivity can be determined. Calibration is required to give correct representation of changing heater resistance, system layer thicknesses and solid material thermal conductivities with temperature. In this preliminary study, methanol/water mixtures are measured at atmospheric pressure over the temperature range 30-50A degrees C. The results show that the device has produced a measurement accuracy of within 2.5% over the range of thermal conductivity and temperature of the tests. A relation between measurement uncertainty and the geometric and thermal properties of the system is derived and this is used to identify ways that error could be further reduced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For Variable Stiffness (VS) composites with steered curvilinear tow paths, the fiber orientation angle varies continuously throughout the laminate, and is not required to be straight, parallel and uniform within each ply as in conventional composite laminates. Hence, the thermal properties (conduction), as well as the structural stiffness and strength, vary as functions of location in the laminate, and the associated composite structure is often called a “variable stiffness” composite structure. The steered fibers lead not only to the alteration of mechanical load paths, but also to the alteration of thermal paths that may
result in favorable temperature distributions within the laminate and improve the laminate performance. Evaluation of VS laminate performance under thermal loading is the focus of this chapter. Thermal performance evaluations require experimental and numerical analysis of VS laminates under different processing and loading conditions. One of the advantages of using composite materials in many applications is the tailoring capability of the laminate,
not only during the design phase but also for manufacturing. Heat transfer through variable conduction and chemical reaction (degree of cure) occurring during manufacturing (curing) plays an important role in the final thermal and mechanical performance, and shape of composite structures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The search for ideal biomaterials is still on-going for tissue regeneration. In this study, blends of Poly ε-caprolactone (PCL) with Poly l-lactic acid (PLLA), Nalidixic Acid (NA) and Polyethylene glycol (PEG) were prepared. Mechanical and thermal properties of the blends were investigated by tensile and flexural analysis, DSC, TGA, WXRD, MFI, BET, SEM and hot stage optical microscopy. Results showed that the loading of PLLA caused a significant decrease in tensile strength and almost total eradication of the elongation at break of PCL matrix, especially after PEG and NA addition. Increased stiffness was also noted with additional NA, PEG and PLLA, resulting in an increase in the flexural modulus of the blends.
Isothermal degradation indicated that bulk PCL, PLLA and the blends were thermally stable at 200°C for the duration of 2h making extrusion of the blends at this temperature viable. Morphological study showed that increasing the PLLA content and addition of the very low viscosity PEG and powder NA decreased the Melt Flow Indexer and increased the viscosity.
At the higher temperature the PLLA begins to soften and eventually melts allowing for increased flow and, coupling this with, the natural increase in MFI caused by temperature is enhanced further. The PEG and NA addition increased dramatically the pore volume which is important for cell growth and flow transport of nutrients and metabolic waste.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The initial composition of acrylic bone cement along with the mixing and delivery technique used can influence its final properties and therefore its clinical success in vivo. The polymerisation of acrylic bone cement is complex with a number of processes happening simultaneously. Acrylic bone cement mixing and delivery systems have undergone several design changes in their advancement, although the cement constituents themselves have remained unchanged since they were first used. This study was conducted to determine the factors that had the greatest effect on the final properties of acrylic bone cement using a pre-filled bone cement mixing and delivery system. A design of experiments (DoE) approach was used to determine the impact of the factors associated with this mixing and delivery method on the final properties of the cement produced. The DoE illustrated that all factors present within this study had a significant impact on the final properties of the cement. An optimum cement composition was hypothesised and tested. This optimum recipe produced cement with final mechanical and thermal properties within the clinical guidelines and stated by ISO 5833 (International Standard Organisation (ISO), International standard 5833: implants for surgery—acrylic resin cements, 2002), however the low setting times observed would not be clinically viable and could result in complications during the surgical technique. As a result further development would be required to improve the setting time of the cement in order for it to be deemed suitable for use in total joint replacement surgery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Herein, we present a comparative study of the thermophysical properties of two homologous ionic liquids, namely, trimethyl-sulfonium bis[(trifluoromethyl) sulfonyl]imide, [S111][TFSI], and trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide, [HN111][TFSI], and their mixtures with propylene carbonate, acetonitrile, or gamma butyrolactone as a function of temperature and composition. The influence of solvent addition on the viscosity, conductivity, and thermal properties of IL solutions was studied as a function of the solvent mole fraction from the maximum solubility of IL, xs, in each solvent to the pure solvent. In this case, xs is the composition corresponding to the maximum salt solubility in each liquid solvent at a given temperature from 258.15 to 353.15 K. The effect of temperature on the transport properties of each binary mixture was then investigated by fitting the experimental data using Arrhenius' law and the Vogel-Tamman-Fulcher (VTF) equation. The experimental data shows that the residual conductivity at low temperature, e.g., 263.15 K, of each binary mixture is exceptionally high. For example, conductivity values up to 35 and 42 mS·cm-1 were observed in the case of the [S 111][TFSI] + ACN and [HN111][TFSI] + ACN binary mixtures, respectively. Subsequently, a theoretical approach based on the conductivity and on the viscosity of electrolytes was formulated by treating the migration of ions as a dynamical process governed by ion-ion and solvent-ion interactions. Within this model, viscosity data sets were first analyzed using the Jones-Dole equation. Using this theoretical approach, excellent agreement was obtained between the experimental and calculated conductivities for the binary mixtures investigated at 298.15 K as a function of the composition up to the maximum solubility of the IL. Finally, the thermal characterization of the IL solutions, using DSC measurements, showed a number of features corresponding to different solid-solid phase transitions, TS-S, with extremely low melting entropies, indicating a strong organizational structure by easy rotation of methyl group. These ILs can be classified as plastic crystal materials and are promising as ambient-temperature solid electrolytes. © 2013 American Chemical Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study we investigated the influence of five different cations on the physical-chemical properties of protic ionic liquids (PILs) based on bis(trifluoromethanesulfonyl)imide (TFSI-). We showed that the viscosities, ionic conductivities, densities and thermal properties of these PIL are strongly affected by the structure of the protic cation. Furthermore, the influence of the cation structure on the lithium coordination was investigated by Raman spectroscopy for all investigated PIL-based electrolytes for lithium-ion batteries (LIBs). This investigation clearly demonstrates, that the lithium average coordination number in PIL-based electrolytes is strongly affected by (ring) size and the number of protons on the cations structure and, more importantly, it might be significantly lower (more than 60 of that of electrolytes containing aprotic ionic liquids (AILs). Electrochemical performances of these PILs-based electrolytes were then also investigated to dress some conclusion on their applicability for LIB.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During this work, a novel series of hydrophobic room temperature ionic liquids (ILs) based on five ether functionalized sulfonium cations bearing the bis(trifluoromethyl)sulfonylimide, [NTf2]- anion were synthesized and characterized. Their physicochemical properties, such as density, viscosity and ionic conductivity, electrochemical window along with thermal properties including phase transition behavior and decomposition temperature, have been measured. All of these ILs showed large liquid range temperature, low viscosity and good conductivity. Additionally, by combining DFT calculations along with electrochemical characterization it appears that these novel ILs show good electrochemical stability windows, suitable for the potential application as electrolyte materials in electrochemical energy storage devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly-L-Lactide is a bioresorbable polymer which degrades through hydrolysis of its ester linkage influenced by initial molecular weight and degree of crystallinity. Polymers belonging to the aliphatic polyester family currently represent the most attractive group of polymers that meet the medical and physical demands for safe clinical applications. Compression moulded PLLA pellets were produced as rods, sterilized and degraded both in vitro and in vivo (sub-dermal implantation model). The material molecular weight, crystallinity, mechanical strength and thermal properties were evaluated. In both in vitro and in vivo environments, degradation proceeded at the same rate and followed the general sequence of aliphatic polyester degradation, ruling out enzymes accelerating the degradation rate in vivo. By 44 weeks duration of implantation the PLLA rods were still biocompatible, before any mass loss was observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly-L-lactide (PLLA) is one of the most significant members of a group of polymers regarded as bioresorbable. The degradation of PLLA proceeds through hydrolysis of the ester linkages in the polymer's backbone; however, the time for the complete resorption of orthopaedic devices manufactured from PLLA is known to be in excess of five years in a normal physiological environment. To evaluate the degradation of PLLA in an accelerated time period, PLLA pellets were processed by compression moulding into tensile test specimens, prior to being sterilized by ethylene oxide gas (EtO) and degraded in a phosphate-buffered solution (PBS) at both 50°C and 70°C. On retrieval, at predetermined time intervals, procedures were used to evaluate the material's molecular weight, crystallinity, mechanical strength, and thermal properties. The results from this study suggest that at both 50°C and 70°C, degradation proceeds by a very similar mechanism to that observed at 37°C in vitro and in vivo. The degradation models developed also confirmed the dependence of mass loss, melting temperature, and glass transition temperature (Tg) on the polymer's molecular weight throughout degradation. Although increased temperature appears to be a suitable method for accelerating the degradation of PLLA, relative to its physiological degradation rate, concerns still remain over the validity of testing above the polymer's Tg and the significance of autocatalysis at increased temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental investigation has been carried out into the effects of changes in plug design on the wall thickness distribution of thermoformed products. Plugs were machined with a series of geometrical variations and their effects on the process were measured. The overall results show that the plug has a crucial role in controlling the wall thickness distribution in thermoforming. Larger plugs tend to distribute more material to the base of the product, but the introduction of a small sidewall taper, base radius, or a reduction in plug diameter tend to lead to more balanced distributions. However, larger changes in any of the variables tend to destroy these benefits. It has also been demonstrated that the frictional and thermal properties of the plug are important in determining the deformation response of the sheet material. There is a clear evidence of slip in the sheet during plug contact and, although the cooling effect of the plug appears to be minimal, cooling in the highly deformed regions away from the plug appears to be a significant factor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial attachment onto intraocular lenses (IOLs) during cataract extraction and IOL implantation is a prominent aetiological factor in the pathogenesis of infectious endophthalmitis. Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) have shown that photosensitizers are effective treatments for cancer, and in the photoinactivation of bacteria, viruses, fungi and parasites, in the presence of light. To date, no method of localizing the photocytotoxic effect of a photosensitizer at a biomaterial surface has been demonstrated. Here we show a method for concentrating this effect at a material surface to prevent bacterial colonization by attaching a porphyrin photosensitizer at, or near to, that surface, and demonstrate the principle using IOL biomaterials. Anionic hydrogel copolymers were shown to permanently bind a cationic porphyrin through electrostatic interactions as a thin surface layer. The mechanical and thermal properties of the materials showed that the porphyrin acts as a surface cross-linking agent, and renders surfaces more hydrophilic. Importantly, Staphylococcus epidermidis adherence was reduced by up to 99.0 ± 0.42% relative to the control in intense light conditions and 91.7± 5.99% in the dark. The ability to concentrate the photocytotoxic effect at a surface, together with a significant dark effect, provides a platform for a range of light-activated anti-infective biomaterial technologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Twelve novel 1,3-dialkylimidazolium salts containing strongly electron-withdrawing nitro-and cyano-functionalities directly appended to the cationic heterocyclic rings have been synthesized; the influences of the substituents on both formation and thermal properties of the resultant ionic liquids have been determined by DSC, TGA, and single crystal X-ray diffraction, showing that an electron-withdrawing nitro-substituent can be successfully appended and has a similar influence on the melting behaviour as that of corresponding methyl group substitution. Synthesis of di-, or trinitro-substituted 1,3-dialkylimidazolium cations was unsuccessful due to the resistance of dinitro-substituted imidazoles to undergo either N-alkylation or protonation, while 1-alkyl- 4,5-dicyanoimidazoles were successfully alkylated to obtain 1,3-dialkyl-4,5-dicyanoimidazolium salts. Five crystal structures ( one of each cation type) show that, in the solid state, the NO2-group has little significant effect, beyond the steric contribution, on the crystal packing.