73 resultados para the mitochondrial signaling pathway
Resumo:
The purpose of this experiment was to assess the test-retest reliability of input-output parameters of the cortico-spinal pathway derived from transcranial magnetic (TMS) and electrical (TES) stimulation at rest and during muscle contraction. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of eight individuals on three separate days. The intensity of TMS at rest was varied from 5% below threshold to the maximal output of the stimulator. During trials in which the muscle was active, TMS and TES intensities were selected that elicited MEPs of between 150 and 300 X at rest. MEPs were evoked while the participants exerted torques up to 50% of their maximum capacity. The relationship between MEP size and stimulus intensity at rest was sigmoidal (R-2 = 0.97). Intra-class correlation coefficients (ICC) ranged between 0.47 and 0.81 for the parameters of the sigmoid function. For the active trials, the slope and intercept of regression equations of MEP size on level of background contraction were obtained more reliably for TES (ICC = 0.63 and 0.78, respectively) than for TMS (ICC = 0.50 and 0.53, respectively), These results suggest that input-output parameters of the cortico-spinal pathway may be reliably obtained via transcranial stimulation during longitudinal investigations of cortico-spinal plasticity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Mitochondrial complex I (NADH: ubiquinone oxidoreductase) undergoes reversible deactivation upon incubation at 30-37 degrees C. The active/deactive transition could play an important role in the regulation of complex I activity. It has been suggested recently that complex I may become modified by S-nitrosation under pathological conditions during hypoxia or when the nitric oxide: oxygen ratio increases. Apparently, a specific cysteine becomes accessible to chemical modification only in the deactive form of the enzyme. By selective fluorescence labeling and proteomic analysis, we have identified this residue as cysteine-39 of the mitochondrially encoded ND3 subunit of bovine heart mitochondria. Cysteine-39 is located in a loop connecting the first and second transmembrane helix of this highly hydrophobic subunit. We propose that this loop connects the ND3 subunit of the membrane arm with the PSST subunit of the peripheral arm of complex I, placing it in a region that is known to be critical for the catalytic mechanism of complex I. In fact, mutations in three positions of the loop were previously reported to cause Leigh syndrome with and without dystonia or progressive mitochondrial disease.
Resumo:
Resistance to cisplatin chemotherapy remains a major hurdle preventing effective treatment of many solid cancers. BAX and BAK are pivotal regulators of the mitochondrial apoptosis pathway, however little is known regarding their regulation in cisplatin resistant cells. Cisplatin induces DNA damage in both sensitive and resistant cells, however the latter exhibits a failure to initiate N-terminal exposure of mitochondrial BAK or mitochondrial SMAC release. Both phenotypes are highly sensitive to mitochondrial permeabilisation induced by exogenous BH3 domain peptides derived from BID, BIM, NOXA (which targets MCL-1 and A1), and there is no significant change in their prosurvival BCL2 protein expression profiles. Obatoclax, a small molecule inhibitor of pro-survival BCL-2 family proteins including MCL-1, decreases cell viability irrespective of platinum resistance status across a panel of cell lines selected for oxaliplatin resistance. In summary, selection for platinum resistance is associated with a block of mitochondrial death signalling upstream of BAX/BAK activation. Conservation of sensitivity to BH3 domain induced apoptosis can be exploited by agents such as obatoclax, which directly target the mitochondria and BCL-2 family.
Resumo:
Zearalenone (ZEN) is a mycotoxin with endocrine disrupting effects having vast economic implications in e.g. pig farming. Structurally, ZEN resembles 17b-estradiol, and thus is able to bind to estrogen receptors (ER) in target cells. Because of this, it is also classified as a non-steroidal estrogen, a phytoestrogen, a mycoestrogen, and a growth promoter. Quantitative proteomic analysis was undertaken using stable-isotope labeling by amino acids in cell culture (SILAC) upon exposure of the steroidogenesis cell model H295R with ZEN to elucidate its effect on protein regulation. ZEN significantly regulated 21 proteins, including proteins with known endocrine disrupting effects and several oncogenes. In addition, network analysis using Ingenuity Pathway Analysis showed that ZEN affected the oxidative phosphorylation pathway and the mitochondrial dysfunction pathway, both previously reported to be involved in endocrine dysfunction.
Resumo:
Abstract Aims The Royal College of Paediatrics and Child Health (RCPCH) Science and Research Department was commissioned by the Department of Health to develop national care pathways for children with allergies: the asthma/rhinitis care pathway is the third such pathway. Asthma and rhinitis have been considered together. These conditions co-exist commonly, have remarkably similar immuno-pathology and an integrated management approach benefits symptom control. Method The asthma/rhinitis pathway was developed by a multidisciplinary working group and was based on a comprehensive review of evidence. The pathway was reviewed by a broad group of stakeholders including the public and was approved by the Allergy Care Pathways Project Board and the RCPCH Clinical Standards Committee. Results The pathway entry points are defined by symptom type and severity at presentation. Acute severe rhinitis and life-threatening asthma are presented as distinct entry routes to the pathway, recognising that initial care of these conditions requires presentation-specific treatments. However, the pathway emphasises that ideal long term care should take account of both conditions in order to achieve maximal improvements in disease control and quality of life. Conclusions The pathway recommends that acute presentations of asthma and/or rhinitis should be treated separately. Where both conditions exist, ongoing management should address the upper and lower airways. The authors recommend that this pathway is implemented locally by a multidisciplinary team (MDT) with a focus on creating networks. The MDT within these networks should work with patients to develop and agree on care plans that are age and culturally appropriate.
Resumo:
To investigate the association of genetic polymorphisms of the interleukin-18 (IL-18) pathway to Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Most cases of EAC arise in a background of reflux-induced BE. Genetic influences in this pathway are poorly understood. IL-18 is a multifunctional cytokine implicated in anti-tumor immunity. A number of polymorphisms of the IL-18 and IL-18 receptor-accessory protein (IL-18RAP) genes have been reported to alter gene expression and have recently been linked to inflammatory processes and various tumors, but have not heretofore been studied in BE and EAC.
Resumo:
In the present study we used a combination of patch clamping and fast confocal Ca2+ imaging to examine the effects of activators of the nitric oxide (NO)/cGMP pathway on pacemaker activity in freshly dispersed ICC from the rabbit urethra, using the amphotericin B perforated patch configuration of the patch-clamp technique. The nitric oxide donor, DEA-NO, the soluble guanylyl cyclase activator YC-1 and the membrane-permeant analogue of cGMP, 8-Br-cGMP inhibited spontaneous transient depolarizations (STDs) and spontaneous transient inward currents (STICs) recorded under current-clamp and voltage-clamp conditions, respectively. Caffeine-evoked Cl- currents were unaltered in the presence of SP-8-Br-PET-cGMPs, suggesting that activation of the cGMP/PKG pathway does not block Cl- channels directly or interfere with Ca2+ release via ryanodine receptors (RyR). However, noradrenaline-evoked Cl- currents were attenuated by SP-8-Br-PET-cGMPs, suggesting that activation of cGMP-dependent protein kinase (PKG) may modulate release of Ca2+ via IP3 receptors (IP3R). When urethral interstitial cells (ICC) were loaded with Fluo4-AM (2 microm), and viewed with a confocal microscope, they fired regular propagating Ca2+ waves, which originated in one or more regions of the cell. Application of DEA-NO or other activators of the cGMP/PKG pathway did not significantly affect the oscillation frequency of these cells, but did significantly reduce their spatial spread. These effects were mimicked by the IP3R blocker, 2-APB (100 microm). These data suggest that NO donors and activators of the cGMP pathway inhibit electrical activity of urethral ICC by reducing the spatial spread of Ca2+ waves, rather than decreasing wave frequency.
Resumo:
Mutations that result in loss of function of Nod2, an intracellular receptor for bacterial peptidoglycan, are associated with Crohn's disease. Here we found that the E3 ubiquitin ligase Pellino3 was an important mediator in the Nod2 signaling pathway. Pellino3-deficient mice had less induction of cytokines after engagement of Nod2 and had exacerbated disease in various experimental models of colitis. Furthermore, expression of Pellino3 was lower in the colons of patients with Crohn's disease. Pellino3 directly bound to the kinase RIP2 and catalyzed its ubiquitination. Loss of Pellino3 led to attenuation of Nod2-induced ubiquitination of RIP2 and less activation of the transcription factor NF-?B and mitogen-activated protein kinases (MAPKs). Our findings identify RIP2 as a substrate for Pellino3 and Pellino3 as an important mediator in the Nod2 pathway and regulator of intestinal inflammation. © 2013 Nature America, Inc. All rights reserved.