82 resultados para test case generation
Resumo:
Thermal comfort is defined as “that condition of mind which expresses satisfaction with the thermal environment’ [1] [2]. Field studies have been completed in order to establish the governing conditions for thermal comfort [3]. These studies showed that the internal climate of a room was the strongest factor in establishing thermal comfort. Direct manipulation of the internal climate is necessary to retain an acceptable level of thermal comfort. In order for Building Energy Management Systems (BEMS) strategies to be efficiently utilised it is necessary to have the ability to predict the effect that activating a heating/cooling source (radiators, windows and doors) will have on the room. The numerical modelling of the domain can be challenging due to necessity to capture temperature stratification and/or different heat sources (radiators, computers and human beings). Computational Fluid Dynamic (CFD) models are usually utilised for this function because they provide the level of details required. Although they provide the necessary level of accuracy these models tend to be highly computationally expensive especially when transient behaviour needs to be analysed. Consequently they cannot be integrated in BEMS. This paper presents and describes validation of a CFD-ROM method for real-time simulations of building thermal performance. The CFD-ROM method involves the automatic extraction and solution of reduced order models (ROMs) from validated CFD simulations. The test case used in this work is a room of the Environmental Research Institute (ERI) Building at the University College Cork (UCC). ROMs have shown that they are sufficiently accurate with a total error of less than 1% and successfully retain a satisfactory representation of the phenomena modelled. The number of zones in a ROM defines the size and complexity of that ROM. It has been observed that ROMs with a higher number of zones produce more accurate results. As each ROM has a time to solution of less than 20 seconds they can be integrated into the BEMS of a building which opens the potential to real time physics based building energy modelling.
Resumo:
Today there is a growing interest in the integration of health monitoring applications in portable devices necessitating the development of methods that improve the energy efficiency of such systems. In this paper, we present a systematic approach that enables energy-quality trade-offs in spectral analysis systems for bio-signals, which are useful in monitoring various health conditions as those associated with the heart-rate. To enable such trade-offs, the processed signals are expressed initially in a basis in which significant components that carry most of the relevant information can be easily distinguished from the parts that influence the output to a lesser extent. Such a classification allows the pruning of operations associated with the less significant signal components leading to power savings with minor quality loss since only less useful parts are pruned under the given requirements. To exploit the attributes of the modified spectral analysis system, thresholding rules are determined and adopted at design- and run-time, allowing the static or dynamic pruning of less-useful operations based on the accuracy and energy requirements. The proposed algorithm is implemented on a typical sensor node simulator and results show up-to 82% energy savings when static pruning is combined with voltage and frequency scaling, compared to the conventional algorithm in which such trade-offs were not available. In addition, experiments with numerous cardiac samples of various patients show that such energy savings come with a 4.9% average accuracy loss, which does not affect the system detection capability of sinus-arrhythmia which was used as a test case.
Resumo:
A conjugate heat transfer (CHT) method was used to perform the aerothermal analysis of an internally cooled turbine vane, and was validated against experimental and empirical data.
Firstly, validation of the method with regard to internal cooling was done by reproducing heat transfer test data in a channel with pin fin heat augmenters, under steady constant wall temperature. The computed Nusselt numbers for the two tested configurations (full length circular pin fins attached to both walls and partial pin fins attached to one wall only) showed good agreement with the measurements. Sensitivity to mesh density was evaluated under this simplified case in order to establish mesh requirements for the analysis of the full component.
Secondly, the CHT method was applied onto a turbine vane test case from an actual engine. The predicted vane airfoil metal temperature was compared to the measured thermal paint data and the in-house empirical predictions. The CHT results agreed well with the thermal paint data and showed better prediction than the current empirical modeling approach.
Resumo:
We demonstrate the ability to control the molecular dissociation rate using femtosecond pulses shaped with third-order dispersion (TOD). Explicitly, a significant 50% enhancement in the dissociation yield for the low lying vibrational levels (v ∼ 6) of an H+2 ion-beam target was measured as a function of TOD. The underlying mechanism responsible for this enhanced dissociation was theoretically identified as non-adiabatic alignment induced by the pre-pulses situated on the leading edge of pulses shaped with negative TOD. This control scheme is expected to work in other molecules as it does not rely on specific characteristics of our test-case H+2 molecule.
Resumo:
Throughout the European Union, the EC Habitats Directive requires that member states undertake national surveillance of designated species. Despite biological connections between-populations across-borders, national assessments need not be co-ordinated in any way. We conducted a trans-boundary assessment of the status of Eurasian otters (Lutra lutra) aimed at providing consistency across a single biogeographical unit, i.e. the island of Ireland, comprising two states, i.e. the Republic of Ireland and the United Kingdom (Northern Ireland). Our aim was to ensure consistency with previous assessments conducted separately in each state, and permit each Government to fulfil their separate statutory reporting commitments. The species range increased by 23% from 1996–2006 and 2007–11. The population estimate of 9400 [95%CI 8700–12,200] breeding females during 2010/11 was not significantly different from 8300 [95%CI 7600–9800] breeding females established as a baseline during 1981–82. Modelling of species-habitat associations suggested that available habitat was not limiting and no putative pressures recorded at sites surveyed negatively affected species occurrence. Thus, under the statutory parameters for assessing a species’ conservation status, i.e. range, population, habitat and future prospects, the otter was judged to be in ‘Favourable’ status throughout Ireland and in both discrete political jurisdictions. Thus, we provide a trans-boundary test case for EU member states that share habitats and species across ecoregions, ensuring conservation assessment data are standardised, synchronised, spatially consistent and, therefore, biologically relevant without compromising legal and administrative autonomy within separate jurisdictions.
Resumo:
A 3D intralaminar continuum damage mechanics based material model, combining damage mode interaction and material nonlinearity, was developed to predict the damage response of composite structures undergoing crush loading. This model captures the structural response without the need for calibration of experimentally determined material parameters. When used in the design of energy absorbing composite structures, it can reduce the dependence on physical testing. This paper validates this model against experimental data obtained from the literature and in-house testing. Results show that the model can predict the force response of the crushed composite structures with good accuracy. The simulated energy absorption in each test case was within 12% of the experimental value. Post-crush deformation and the damage morphologies, such as ply splitting, splaying and breakage, were also accurately reproduced. This study establishes the capability of this damage model for predicting the responses of composite structures under crushing loads.
Resumo:
This study examines the impact of ambient temperature on emotional well-being in the U.S. population aged 18+. The U.S. is an interesting test case because of its resources, technology and variation in climate across different areas, which also allows us to examine whether adaptation to different climates could weaken or even eliminate the impact of heat on well-being. Using survey responses from 1.9 million Americans over the period from 2008 to 2013, we estimate the effect of temperature on well-being from exogenous day-to-day temperature variation within respondents’ area of residence and test whether this effect varies across areas with different climates. We find that increasing temperatures significantly reduce well-being. Compared to average daily temperatures in the 50–60 °F (10–16 °C) range, temperatures above 70 °F (21 °C) reduce positive emotions (e.g. joy, happiness), increase negative emotions (e.g. stress, anger), and increase fatigue (feeling tired, low energy). These effects are particularly strong among less educated and older Americans. However, there is no consistent evidence that heat effects on well-being differ across areas with mild and hot summers, suggesting limited variation in heat adaptation.
Resumo:
Steady-state computational fluid dynamics (CFD) simulations are an essential tool in the design process of centrifugal compressors. Whilst global parameters, such as pressure ratio and efficiency, can be predicted with reasonable accuracy, the accurate prediction of detailed compressor flow fields is a much more significant challenge. Much of the inaccuracy is associated with the incorrect selection of turbulence model. The need for a quick turnaround in simulations during the design optimisation process, also demands that the turbulence model selected be robust and numerically stable with short simulation times.
In order to assess the accuracy of a number of turbulence model predictions, the current study used an exemplar open CFD test case, the centrifugal compressor ‘Radiver’, to compare the results of three eddy viscosity models and two Reynolds stress type models. The turbulence models investigated in this study were (i) Spalart-Allmaras (SA) model, (ii) the Shear Stress Transport (SST) model, (iii) a modification to the SST model denoted the SST-curvature correction (SST-CC), (iv) Reynolds stress model of Speziale, Sarkar and Gatski (RSM-SSG), and (v) the turbulence frequency formulated Reynolds stress model (RSM-ω). Each was found to be in good agreement with the experiments (below 2% discrepancy), with respect to total-to-total parameters at three different operating conditions. However, for the off-design conditions, local flow field differences were observed between the models, with the SA model showing particularly poor prediction of local flow structures. The SST-CC showed better prediction of curved rotating flows in the impeller. The RSM-ω was better for the wake and separated flow in the diffuser. The SST model showed reasonably stable, robust and time efficient capability to predict global and local flow features.
Resumo:
Next-generation sequencing (NGS) is beginning to show its full potential for diagnostic and therapeutic applications. In particular, it is enunciating its capacity to contribute to a molecular taxonomy of cancer, to be used as a standard approach for diagnostic mutation detection, and to open new treatment options that are not exclusively organ-specific. If this is the case, how much validation is necessary and what should be the validation strategy, when bringing NGS into the diagnostic/clinical practice? This validation strategy should address key issues such as: what is the overall extent of the validation? Should essential indicators of test performance such as sensitivity of specificity be calculated for every target or sample type? Should bioinformatic interpretation approaches be validated with the same rigour? What is a competitive clinical turnaround time for a NGS-based test, and when does it become a cost-effective testing proposition? While we address these and other related topics in this commentary, we also suggest that a single set of international guidelines for the validation and use of NGS technology in routine diagnostics may allow us all to make a much more effective use of resources.
Listening to ‘Generation Jacobs’; A Case Study in Participative Engagement for a Child-Friendly City
Resumo:
This paper reflects on the enduring value of Jane Jacobs’ Life and Death of American Cities in the context of Child-Friendly Cities. This is explored through a project in Belfast which has engaged primary school children in how they understand their local environment. This shows that while children can effectively contribute to policy debates, there is a need to express this in a way that can be more effectively assimilated into planning debates. The paper reflects on this experience, suggesting that ‘Generation Jacobs’ could be used as a rhetorical device to frame children’s needs in a way that can be better understood by the planning profession.
Resumo:
This paper introduces a novel load sharing algorithm to enable island synchronization. The system model used for development is based on an actual system for which historical measurement and fault data is available and is used to refine and test the algorithms performance and validity. The electrical system modelled is selected due to its high-level of hydroelectric generation and its history of islanding events. The process of developing the load sharing algorithm includes a number of steps. Firstly, the development of a simulation model to represent the case study accurately - this is validated by way of matching system behavior based on data from historical island events. Next, a generic island simulation is used to develop the load sharing algorithm. The algorithm is then tested against the validated simulation model representing the case study area selected. Finally, a laboratory setup is described which is used as validation method for the novel load sharing algorithm.
Resumo:
Many engineers currently in professional practice will have gained a degree level qualification which involved studying a curriculum heavy with mathematics and engineering science. While this knowledge is vital to the engineering design process so also is manufacturing knowledge, if the resulting designs are to be both technically and commercially viable.
The methodology advanced by the CDIO Initiative aims to improve engineering education by teaching in the context of Conceiving, Designing, Implementing and Operating products, processes or systems. A key element of this approach is the use of Design-Built-Test (DBT) projects as the core of an integrated curriculum. This approach facilitates the development of professional skills as well as the application of technical knowledge and skills developed in other parts of the degree programme. This approach also changes the role of lecturer to that of facilitator / coach in an active learning environment in which students gain concrete experiences that support their development.
The case study herein describes Mechanical Engineering undergraduate student involvement in the manufacture and assembly of concept and functional prototypes of a folding bicycle.
Resumo:
There have been theoretical and experimental studies on quantum nonlocality for continuous variables, based on dichotomic observables. In particular, we are interested in two cases of dichotomic observables for the light field of continuous variables: One case is even and odd numbers of photons and the other case is no photon and the presence of photons. We analyze various observables to give the maximum violation of Bell's inequalities for continuous-variable states. We discuss an observable which gives the violation of Bell's inequality for any entangled pure continuous-variable state. However, it does not have to be a maximally entangled state to give the maximal violation of Bell's inequality. This is attributed to a generic problem of testing the quantum nonlocality of an infinite- dimensional state using a dichotomic observable.