21 resultados para temporal change


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural ecosystems are increasingly exposed to multiple anthropogenic stressors, including land-use change, deforestation, agricultural intensification, and urbanisation, all of which have led to widespread habitat fragmentation, which is also likely to be amplified further by predicted climate change. The potential interactive effects of these different stressors cannot be determined by studying each in isolation, although such synergies have been largely ignored in ecological field studies to date. Here, we use a model system of naturally fragmented islands in a braided river network, which is exposed to periodic inundation, to investigate the interactive effects of habitat isolation and flood disturbance. Food web structure was similar across the islands during periods of hydrological stability, but several key properties were altered in the aftermath of flood disturbance, based on distance of the islands from the regional source pool of species: taxon richness and mean food chain length declined with habitat isolation after flooding, while the proportion of basal species increased. Greater species turnover through time reflected the slower process of re-colonisation on the more distant islands following disturbance. Increased variability of several food web properties over a 1-year period highlighted the reduced temporal stability of isolated habitat fragments. Many of these effects reflected the differential successes of predator and prey species at re-colonising the islands: even though larger, more mobile consumers may reach the more distant islands first, they cannot establish populations until the lower trophic levels have successfully reassembled. These results highlight the susceptibility of fragmented ecosystems to environmental perturbations. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time features in two key ways in cognition, each of which is discussed in turn in this chapter: time is processed as a dimension of stimuli or events, and time is represented as a framework in which events can be located. Section 1 examines the first of these from a developmental perspective, by reviewing research on age-related changes in the accuracy of duration processing. The Piagetian approach linked changes in duration processing to the development of a concept of time as a dimension of events separable from other event dimensions. This is contrasted with recent research conducted within the framework of Scalar Expectancy Theory, which models development in terms of changes in components of specialized timing mechanisms. Section 2 discusses developmental changes in the temporal frameworks that children use to represent the locations of events. Although as adults, we represent times as locations on a linear framework stretching from the past, to the present, and into the future, this way of representing time is not developmentally basic. A model is proposed of developmental stages in the acquisition of a mature temporal framework. The chapter concludes by considering two themes that cut across Section 1 and 2: the issue of whether there are both qualitative and quantitative change in children’s temporal abilities, and the link between temporal and spatial cognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Irish and UK governments, along with other countries, have made a commitment to limit the concentrations of greenhouse gases in the atmosphere by reducing emissions from the burning of fossil fuels. This can be achieved (in part) through increasing the sequestration of CO2 from the atmosphere including monitoring the amount stored in vegetation and soils. A large proportion of soil carbon is held within peat due to the relatively high carbon density of peat and organic-rich soils. This is particularly important for a country such as Ireland, where some 16% of the land surface is covered by peat. For Northern Ireland, it has been estimated that the total amount of carbon stored in vegetation is 4.4Mt compared to 386Mt stored within peat and soils. As a result it has become increasingly important to measure and monitor changes in stores of carbon in soils. The conservation and restoration of peat covered areas, although ongoing for many years, has become increasingly important. This is summed up in current EU policy outlined by the European Commission (2012) which seeks to assess the relative contributions of the different inputs and outputs of organic carbon and organic matter to and from soil. Results are presented from the EU-funded Tellus Border Soil Carbon Project (2011 to 2013) which aimed to improve current estimates of carbon in soil and peat across Northern Ireland and the bordering counties of the Republic of Ireland.
Historical reports and previous surveys provide baseline data. To monitor change in peat depth and soil organic carbon, these historical data are integrated with more recently acquired airborne geophysical (radiometric) data and ground-based geochemical data generated by two surveys, the Tellus Project (2004-2007: covering Northern Ireland) and the EU-funded Tellus Border project (2011-2013) covering the six bordering counties of the Republic of Ireland, Donegal, Sligo, Leitrim, Cavan, Monaghan and Louth. The concept being applied is that saturated organic-rich soil and peat attenuate gamma-radiation from underlying soils and rocks. This research uses the degree of spatial correlation (coregionalization) between peat depth, soil organic carbon (SOC) and the attenuation of the radiometric signal to update a limited sampling regime of ground-based measurements with remotely acquired data. To comply with the compositional nature of the SOC data (perturbations of loss on ignition [LOI] data), a compositional data analysis approach is investigated. Contemporaneous ground-based measurements allow corroboration for the updated mapped outputs. This provides a methodology that can be used to improve estimates of soil carbon with minimal impact to sensitive habitats (like peat bogs), but with maximum output of data and knowledge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many CCTV and sensor network based intelligent surveillance systems, a number of attributes or criteria are used to individually evaluate the degree of potential threat of a suspect. The outcomes for these attributes are in general from analytical algorithms where data are often pervaded with uncertainty and incompleteness. As a result, such individual threat evaluations are often inconsistent, and individual evaluations can change as time elapses. Therefore, integrating heterogeneous threat evaluations with temporal influence to obtain a better overall evaluation is a challenging issue. So far, this issue has rarely be considered by existing event reasoning frameworks under uncertainty in sensor network based surveillance. In this paper, we first propose a weighted aggregation operator based on a set of principles that constraints the fusion of individual threat evaluations. Then, we propose a method to integrate the temporal influence on threat evaluation changes. Finally, we demonstrate the usefulness of our system with a decision support event modeling framework using an airport security surveillance scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the dietary consumption and selection of wild populations of generalist herbivores is hampered by the complex array of factors. Here, we determine the influence of habitat, season, and animal density, sex, and age on the diet consumption and selection of 426 red deer (Cervus elaphus scoticus) culled in Fiordland National Park, New Zealand. Our site differs from studies elsewhere both in habitat (evergreen angiosperm-dominated forests) and the intensity of hunting pressures. We predicted that deer would not consume forage in proportion to its relative availability, and that dietary consumption would change among and within years in response to hunting pressures that would also limit opportunities for age and sex segregation. Using canonical correspondence analysis, we evaluated the relative importance of different drivers of variation in diet consumption assessed from gut content and related these to available forage in the environment. We found that altitude explained the largest proportion of variation in diet consumption, reflecting the ability of deer to alter their consumption and selection in relation to their foraging grounds. Grasses formed a high proportion of the diet consumption, even for deer culled several kilometres from the alpine grasslands. In the winter months, when the alpine grasslands were largely inaccessible, less grass was eaten and deer resorted to woody plants that were avoided in the summer months. Surprisingly, there were no significant dietary differences between adults and juveniles and only subtle differences between the sexes. Sex-based differences in diet consumption are commonly observed in ungulate species and we suggest that they may have been reduced in our study area owing to decreased heterogeneity in available forage as the diversity of palatable species decreased under high deer browsing pressures, or by intense hunting pressure. © 2009 The Authors. Journal compilation © 2009 Ecological Society of Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beta diversity quantifies spatial and/or temporal variation in species composition. It is comprised of two distinct components, species replacement and nestedness, which derive from opposing ecological processes. Using Scotland as a case study and a β-diversity partitioning framework, we investigate temporal replacement and nestedness patterns of coastal grassland species over a 34-yr time period. We aim to 1) understand the influence of two potentially pivotal processes (climate and land-use changes) on landscape-scale (5 × 5 km) temporal replacement and nestedness patterns, and 2) investigate whether patterns from one β-diversity component can mask observable patterns in the other.

We summarised key aspects of climate driven macro-ecological variation as measures of variance, long-term trends, between-year similarity and extremes, for three important climatic predictors (minimum temperature, water-balance and growing degree-days). Shifts in landscape-scale heterogeneity, a proxy of land-use change, was summarised as a spatial multiple-site dissimilarity measure. Together, these climatic and spatial predictors were used in a multi-model inference framework to gauge the relative contribution of each on temporal replacement and nestedness patterns.

Temporal β-diversity patterns were reasonably well explained by climate change but weakly explained by changes in landscape-scale heterogeneity. Climate was shown to have a greater influence on temporal nestedness than replacement patterns over our study period, linking nestedness patterns, as a result of imbalanced gains and losses, to climatic warming and extremes respectively. Important climatic predictors (i.e. growing degree-days) of temporal β-diversity were also identified, and contrasting patterns between the two β-diversity components revealed.

Results suggest climate influences plant species recruitment and establishment processes of Scotland's coastal grasslands, and while species extinctions take time, they are likely to be facilitated by climatic perturbations. Our findings also highlight the importance of distinguishing between different components of β-diversity, disentangling contrasting patterns than can mask one another.