66 resultados para system dynamics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The creation of Causal Loop Diagrams (CLDs) is a major phase in the System Dynamics (SD) life-cycle, since the created CLDs express dependencies and feedback in the system under study, as well as, guide modellers in building meaningful simulation models. The cre-ation of CLDs is still subject to the modeller's domain expertise (mental model) and her ability to abstract the system, because of the strong de-pendency on semantic knowledge. Since the beginning of SD, available system data sources (written and numerical models) have always been sparsely available, very limited and imperfect and thus of little benefit to the whole modelling process. However, in recent years, we have seen an explosion in generated data, especially in all business related domains that are analysed via Business Dynamics (BD). In this paper, we intro-duce a systematic tool supported CLD creation approach, which analyses and utilises available disparate data sources within the business domain. We demonstrate the application of our methodology on a given business use-case and evaluate the resulting CLD. Finally, we propose directions for future research to further push the automation in the CLD creation and increase confidence in the generated CLDs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyze the role played by system-environment correlations in the emergence of non-Markovian dynamics. By working within the framework developed in Breuer et al. [Phys. Rev. Lett. 103, 210401 (2009)], we unveil a fundamental connection between non-Markovian behavior and dynamics of system-environment correlations. We derive an upper bound to the rate of change of the distinguishability between different states of the system that explicitly depends on the establishment of correlations between system and environment. We illustrate our results using a fully solvable spin-chain model, which allows us to gain insight into the mechanisms triggering non-Markovian evolution. © 2012 American Physical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: We proposed to exploit hypoxia-inducible factor (HIF)-1alpha overexpression in prostate tumours and use this transcriptional machinery to control the expression of the suicide gene cytosine deaminase (CD) through binding of HIF-1alpha to arrangements of hypoxia response elements. CD is a prodrug activation enzyme, which converts inactive 5-fluorocytosine to active 5-fluorouracil (5-FU), allowing selective killing of vector containing cells.

METHODS: We developed a pair of vectors, containing either five or eight copies of the hypoxia response element (HRE) isolated from the vascular endothelial growth factor (pH5VCD) or glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (pH8GCD) gene, respectively. The kinetics of the hypoxic induction of the vectors and sensitization effects were evaluated in 22Rv1 and DU145 cells in vitro.

RESULTS: The CD protein as selectively detected in lysates of transiently transfected 22Rv1 and DU145 cells following hypoxic exposure. This is the first evidence of GAPDH HREs being used to control a suicide gene therapy strategy. Detectable CD levels were sustained upon reoxygenation and prolonged hypoxic exposures. Hypoxia-induced chemoresistance to 5-FU was overcome in both cell lines treated with this suicide gene therapy approach. Hypoxic transfectants were sensitized to prodrug concentrations that were ten-fold lower than those that are clinically relevant. Moreover, the surviving fraction of reoxygenated transfectants could be further reduced with the concomitant delivery of clinically relevant single radiation doses.

CONCLUSIONS: This strategy thus has the potential to sensitize the hypoxic compartment of prostate tumours and improve the outcome of current therapies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electron dynamics in a planar coil inductively coupled plasma (ICP) system with a capacitively biased electrode is investigated using space and phase resolved optical emission spectroscopy. The two power source frequencies are exact multiple of each other and phase-locked. In this configuration, the system is investigated when the coil is operated in both E-mode and H-mode. The results show that in a phase synchronized RF biased ICP, the electrode bias power couples with the capacitive contribution of the coil, in both E-mode and H-modes, similar to dual-frequency capacitively coupled plasmas (2f-CCPs). It is also demonstrated that in H-mode, the phase between the electrode bias frequency and the ICP coil frequency influences the electron heating, similar to the electrical asymmetry effect in 2f-CCPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By molecular dynamics (MD) simulations we study the crystallization process in a model system whose particles interact by a spherical pair potential with a narrow and deep attractive well adjacent to a hard repulsive core. The phase diagram of the model displays a solid-fluid equilibrium, with a metastable fluid-fluid separation. Our computations are restricted to fairly small systems (from 2592 to 10368 particles) and cover long simulation times, with constant energy trajectories extending up to 76x10(6) MD steps. By progressively reducing the system temperature below the solid-fluid line, we first observe the metastable fluid-fluid separation, occurring readily and almost reversibly upon crossing the corresponding line in the phase diagram. The nucleation of the crystal phase takes place when the system is in the two-fluid metastable region. Analysis of the temperature dependence of the nucleation time allows us to estimate directly the nucleation free energy barrier. The results are compared with the predictions of classical nucleation theory. The critical nucleus is identified, and its structure is found to be predominantly fcc. Following nucleation, the solid phase grows steadily across the system, incorporating a large number of localized and extended defects. We discuss the relaxation processes taking place both during and after the crystallization stage. The relevance of our simulation for the kinetics of protein crystallization under normal experimental conditions is discussed. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a novel method to simulate hydrated macromolecules with a dielectric continuum representation of the surrounding solvent. In our approach, the interaction between the solvent and the molecular degrees of freedom is described by means of a polarization density free energy functional which is minimum at electrostatic equilibrium. After a pseudospectral expansion of the polarization and a discretization of the functional, we construct the equations of motion for the system based on a Car-Parrinello technique. In the limit of the adiabatic evolution of the polarization field variables, our method provides the solution of the dielectric continuum problem "on the fly," while the molecular coordinates are propagated. In this first study, we show how our dielectric continuum molecular dynamics method can be successfully applied to hydrated biomolecules, with low cost compared to free energy simulations with explicit solvent. To our knowledge, this is the first time that stable and conservative molecular dynamic simulations of solutes can be performed for a dielectric continuum model of the solvent. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear interaction between two laser beams in a plasma is investigated in the weakly nonlinear and relativistic regime. The evolution of the laser beams is governed by two nonlinear Schrodinger equations that are coupled with the slow plasma density response. A nonlinear dispersion relation is derived and used to study the growth rates of the Raman forward and backward scattering instabilities as well of the Brillouin and self-focusing/modulational instabilities. The nonlinear evolution of the instabilities is investigated by means of direct simulations of the time-dependent system of nonlinear equations. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chaotic profile of dust grain dynamics associated with dust-acoustic oscillations in a dusty plasma is considered. The collective behaviour of the dust plasma component is described via a multi-fluid model, comprising Boltzmann distributed electrons and ions, as well as an equation of continuity possessing a source term for the dust grains, the dust momentum and Poisson's equations. A Van der Pol–Mathieu-type nonlinear ordinary differential equation for the dust grain density dynamics is derived. The dynamical system is cast into an autonomous form by employing an averaging method. Critical stability boundaries for a particular trivial solution of the governing equation with varying parameters are specified. The equation is analysed to determine the resonance region, and finally numerically solved by using a fourth-order Runge–Kutta method. The presence of chaotic limit cycles is pointed out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pollen-based study from Tiny Lake in the Seymour-Belize Inlet Complex of central coastal British Columbia, Canada, permits an evaluation of the dynamic response of coastal temperate rainforests to postglacial climate change. Open Pinus parklands grew at the site during the early Lateglacial when the climate was cool and dry, but more humid conditions in the later phases of the Lateglacial permitted mesophytic conifers to colonise the region. Early Holocene conditions were warmer than present and a successional mosaic of Tsuga heterophylla and Alnus occurred at Tiny Lake. Climate cooling and moistening at 8740?±?70 14C a BP initiated the development of closed, late successional T. heterophylla–Cupressaceae forests, which achieved modern character after 6860?±?50 14C a BP, when a temperate and very wet climate became established. The onset of early Holocene climate cooling and moistening at Tiny Lake may have preceded change at more southern locations, including within the Seymour-Belize Inlet Complex, on a meso- to synoptic scale. This would suggest that an early Holocene intensification of the Aleutian Low pressure system was an important influence on forest dynamics in the Seymour-Belize Inlet Complex and that the study region was located near the southern extent of immediate influence of this semi-permanent air mass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on new simultaneous phase-resolved spectroscopic and polarimetric observations of the polar (AM Herculis star) V834 Cen during a high state of accretion. Strong emission lines and high levels of variable circular and linear polarization are observed over the orbital period. The polarization data are modelled using the Stokes imaging technique of Potter et al. The spectroscopic emission lines are investigated using the Doppler tomography technique of Marsh and Horne and the Roche tomography technique of Dhillon and Watson. Up to now, all three techniques have been used separately to investigate the geometry and accretion dynamics in cataclysmic variables. For the first time, we apply all three techniques to simultaneous data for a single system. This allows us to compare and test each of the techniques against each other and hence to derive a better understanding of the geometry, dynamics and system parameters of V834 Cen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dynamical method for inelastic transport simulations in nanostructures is compared to a steady-state method based on nonequilibrium Green's functions. A simplified form of the dynamical method produces, in the steady state in the weak-coupling limit, effective self-energies analogous to those in the Born approximation due to electron-phonon coupling. The two methods are then compared numerically on a resonant system consisting of a linear trimer weakly embedded between metal electrodes. This system exhibits an enhanced heating at high biases and long phonon equilibration times. Despite the differences in their formulation, the static and dynamical methods capture local current-induced heating and inelastic corrections to the current with good agreement over a wide range of conditions, except in the limit of very high vibrational excitations where differences begin to emerge.