32 resultados para surface emission
Resumo:
We have used the JCMT to survey molecular line emission towards 14 ultracompact HII regions (G5.89, G9.62, G10.30, G10.47, G12.21, G13.87, G29.96, G31.41, G34.26, G43.89, G45.12, G45.45, G45.47, and G75.78). For each source, we observed up to ten 1 GHz bands between 200 and 350 GHz, covering lines of more than 30 species including multiple transitions of CO isotopes, CH3OH, CH3CCH, CH3CN and HCOOCH3, and sulphuretted molecules. The number of transitions detected varied by a factor of 20 between sources; which were chosen following observations of high-excitation ammonia (Cesaroni et al. 1994a) and methyl cyanide (Olmi et al. 1993). In half our sample (the line-poor sources), only (CO)-O-17: (CO)-O-18, SO, (CS)-S-34 and CH3OH were detected. In the line-rich sources, we detected over 150 lines, including high excitation lines of CH3CN, HCOOCH3; C2H5CN, CH3OH, and CH3CCH. We have calculated the physical conditions of the molecular gas. To reproduce the emission from the line-rich sources requires both a hot, dense compact core and an ambient cloud consisting of less dense, cooler gas. The hot cores, which are less than 0.1 pc in size; reach densities of at least 10(8) cm(-3) and temperatures of more than 80 K. The line-poor sources can be modelled without a hot core by a 20-30 K, 10(5) cm(-3) cloud. We find no correlation between the size of the HII region and the current physical conditions in the molecular environment. A comparison with chemical models (Millar et al. 1997) confirms that grain surface chemistry is important in hot cores.
Resumo:
Heavy metals, primarily zinc, copper, lead, and chromium, and Polycyclic Aromatic Hydrocarbons (PAHs) are the main hazardous constituents of road runoff. The main sources of these contaminants are vehicle emission, mostly through wear and leakage, although erosion of the road surface and de-icing salts are also recognised pollution sources. The bioavailability of these toxic compounds, and more importantly their potential biomagnification along food chains, could affect aquatic communities persistently exposed to road runoff. Several internationally approved abatement technologies are available for the management of road runoff on new motorway schemes. Recent studies conducted in Cork and Dublin, Ireland demonstrated the efficacy of infiltration trenches as abatement technologies in the removal of both heavy metals and PAHs prior to discharge; the technology was however inefficient in mitigating first flush events. Gully traps with sedimentation chambers, another technology investigated, demonstrated to have a substantially lower removal potential but appeared to be more effective in attenuating surges of contaminants attributed to first flush events. Consequently the employment of combined abatement techniques could efficiently minimise deviations from required effluent concentrations. The studies determined a relatively stationary accumulation of heavy metals and PAHs in sediments close to the point of discharge with a rapid decline in concentration in nearby downstream sediments (<50m). Further, Microtox® Solid Phase testing reported a negligible impact on assemblages exposed to contaminated sediments for all sites investigated. This paper describes pollutant loading from road runoff and mitigation measures from a freshwater deterioration in a water quality perspective. The results and analysis of field samples collected adjacent to a number of roads and motorways in Ireland is also presented. Finally sustainable drainage systems, abatement techniques and technologies available for onsite treatment of runoff are presented to improve and mitigate impacts of vehicular transport on the environment.
Resumo:
The transport of relativistic electrons generated in the interaction of petawatt class lasers with solid targets has been studied through measurements of the second harmonic optical emission from their rear surface. The high degree of polarization of the emission indicates that it is predominantly optical transition radiation (TR). A halo that surrounds the main region of emission is also polarized and is attributed to the effect of electron recirculation. The variation of the polarization state and intensity of radiation with the angle of observation indicates that the emission of TR is highly directional and provides evidence for the presence of mu m-size filaments. A brief discussion on the possible causes of such a fine electron beam structure is given.
Resumo:
The fast ignitor scheme for inertial confinement fusion requires forward driving of the critical density surface by light pressure (hole boring) to allow energy deposition close to the dense fuel. The recession velocity of the critical density surface has been observed to be nu/c = 0.015 at an irradiance of 1.0 x 10(19) W cm(-2) at a wavelength of 1.05 micron, in quantitative agreement with modeling. (C) 1996 American Institute of Physics.
Resumo:
Measurements of plasma parameters, including H- ion densities, made in conjunction with wall temperature, visible and vacuum ultraviolet emission spectroscopy verify that there is little caesium in the plasma volume of the H- ion source. Surface work function measurements indicate that there is significant caesium coverage of the inner walls of the ion source. It is found that, as the work function of a test surface decreases due to caesium seeding, the H- ion fraction in the discharge volume increases. These observations combine to indicate that, in the present source, the H- ion enhancement mechanism is a surface dominated effect. (C) 1999 American Institute of Physics. [S0003- 6951(99)04744-0].
Resumo:
Star formation often occurs within or nearby stellar clusters. Irradiation by nearby massive stars can photoevaporate protoplanetary disks around young stars (so-called proplyds) which raises questions regarding the ability of planet formation to take place in these environments. We investigate the two-dimensional physical and chemical structure of a protoplanetary disk surrounding a low-mass (T Tauri) star which is irradiated by a nearby massive O-type star to determine the survivability and observability of molecules in proplyds. Compared with an isolated star-disk system, the gas temperature ranges from a factor of a few (in the disk midplane) to around two orders of magnitude (in the disk surface) higher in the irradiated disk. Although the UV flux in the outer disk, in particular, is several orders of magnitude higher, the surface density of the disk is sufficient for effective shielding of the disk midplane so that the disk remains predominantly molecular in nature. We also find that non-volatile molecules, such as HCN and H2O, are able to freeze out onto dust grains in the disk midplane so that the formation of icy planetesimals, e.g., comets, may also be possible in proplyds. We have calculated the molecular line emission from the disk assuming LTE and determined that multiple transitions of atomic carbon, CO (and isotopologues, 13CO and C18O), HCO+, CN, and HCN may be observable with ALMA, allowing characterization of the gas column density, temperature, and optical depth in proplyds at the distance of Orion (˜400 pc).
Resumo:
Emission line fluxes from cool stars are widely used to establish an apparent emission measure distribution, EmdApp(Te), between temperatures characteristic of the low transition region and the low corona. The true emission measure distribution, EmdTrue(Te), is determined by the energy balance and geometry adopted and, with a numerical model, can be used to predict EmdApp(Te), to guide further modelling. The scaling laws that exist between coronal parameters arise from the dimensions of the terms in the energy balance equation. Here, analytical approximations to numerical solutions for EmdTrue(Te) are presented, which show how the constants in the coronal scaling laws are determined. The apparent emission measure distributions show a minimum value at some T0 and a maximum at the mean coronal temperature Tc (although in some stars, emission from active regions can contribute). It is shown that, for the energy balance and geometry adopted, the analytical values of the emission measure and electron pressure at T0 and Tc depend on only three parameters: the stellar surface gravity and the values of T0 and Tc. The results are tested against full numerical solutions for e Eri (K2 V) and are applied to Procyon (a CMi, F5 IV/V). The analytical approximations can be used to restrict the required range of full numerical solutions, to check the assumed geometry and to show where the adopted energy balance may not be appropriate. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
Resumo:
Recent experimental results definitively showed, for the first time, optical radiation mediated by the slow mode surface plasmon polariton of metal-oxide-metal tunnel junctions. Here, dispersion curves for this mode are calculated. They are consistent with first-order grating coupling to light at the energies of the experimental emission peaks. The curves are then used to analyze second-order and high-energy (> 2.35 eV) grating coupling of the polaritons to radiation. Finally, variation of slow mode damping as a function of energy is used to explain qualitatively the relative experimental peak emission intensities and the absence of radiation peaks above 2.35 eV.
Resumo:
Using a prism-air gap-sample (Otto) configuration we have optically excited surface plasmon polaritons at the Ag-air interface of passive Al-Al oxide-Ag tunnel junction structures at wavelength 632.8 nm. It is found that the internal damping of this excitation is more than a factor of 2 greater for samples with a very thin (approximately 15 nm) Ag electrode than for samples with a thicker (approximately 40 nm) Ag electrode. This observation is explained by the fact that the fields of the surface plasmon polariton penetrate more substantially into the lossy Al base electrode when the Ag top electrode is very thin.
Resumo:
Visible light is emitted from the Au-air interface of Al-I-Au thin-film tunnel junctions (deposited over a thin layer of CaF2 on glass) as a result of the decay of surface plasmon polaritons (SPPs). We show the surface topography of such a Au film and relate its large-scale features to the outcoupling of fast SPP's to photons. The absence of short-scale roughness features is explained by thier disappearance through surface diffusion. To confirm this a controlled sequence of 5-nm, 20-ms scanning tunneling microscope (STM) W tip crashes has been used to produce indentations 3 nm deep with a lateral dimension of 5-7 nm on a Au crystal in air at room temperature. Four sequences of indentations were drawn in the form of a square box. Right from the start, feature decay is observed and over a period of 2 h a succession of images shows that the structure disappears into the background as a result of surface diffusion. The surface diffusion constant is estimated to be 10(-18) cm2 s-1. The lack of light output via slow mode SPPs is an inevitable consequence of surface annealing.
Resumo:
Here we consider the numerical optimization of active surface plasmon polariton (SPP) trench waveguides suited for integration with luminescent polymers for use as highly localized SPP source devices in short-scale communication integrated circuits. The numerical analysis of the SPP modes within trench waveguide systems provides detailed information on the mode field components, effective indices, propagation lengths and mode areas. Such trench waveguide systems offer extremely high confinement with propagation on length scales appropriate to local interconnects, along with high efficiency coupling of dipolar emitters to waveguided plasmonic modes which can be close to 80%. The large Purcell factor exhibited in these structures will further lead to faster modulation capabilities along with an increased quantum yield beneficial for the proposed plasmon-emitting diode, a plasmonic analog of the light-emitting diode. The confinement of studied guided modes is on the order of 50 nm and the delay over the shorter 5 μm length scales will be on the order of 0.1 ps for the slowest propagating modes of the system, and significantly less for the faster modes.
Resumo:
InP(1 0 0) surfaces were sputtered under ultrahigh vacuum conditions by 5 keV N2+ ions at an angle of incidence of 41° to the sample normal. The fluence, φ, used in this study, varied from 1 × 1014 to 5 × 1018 N2+ cm-2. The surface topography was investigated using field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). At the lower fluences (φ ≤ 5 × 1016 N2+ cm-2) only conelike features appeared, similar in shape as was found for noble gas ion bombardment of InP. At the higher fluences, ripples also appeared on the surface. The bombardment-induced topography was quantified using the rms roughness. This parameter showed a linear relationship with the logarithm of the fluence. A model is presented to explain this relationship. The ripple wavelength was also determined using a Fourier transform method. These measurements as a function of fluence do not agree with the predictions of the Bradley-Harper theory. © 2004 Elsevier B.V. All rights reserved.