309 resultados para supernovae: individual: SN 2011hw
Resumo:
We present early photometric and spectroscopic observations of SN 2013ej, a bright Type IIP supernova (SN) in M74. SN 2013ej is one of the closest SNe ever discovered. The available archive images and the early discovery help to constrain the nature of its progenitor. The earliest detection of this explosion was on 2013 July 24.125 UT and our spectroscopic monitoring with the FLOYDS spectrographs began on July 27.7 UT, continuing almost daily for two weeks. Daily optical photometric monitoringwas achieved with the 1mtelescopes of the Las Cumbres Observatory Global Telescope (LCOGT) network, and was complemented by UV data from Swift and near-infrared spectra from Public ESO Spectroscopic Survey of Transient Objects and Infrared Telescope Facility. The data from our monitoring campaign show that SN 2013ej experienced a 10 d rise before entering into a well-defined plateau phase. This unusually long rise time for a Type IIP has been seen previously in SN 2006bp and SN 2009bw. A relatively rare strong absorption blueward of Hα is present since our earliest spectrum. We identify this feature as Si II, rather than high-velocity Hα as sometimes reported in the literature.
Resumo:
We present new data for five underluminous Type II-plateau supernovae (SNe IIP), namely SN 1999gn, SN 2002gd, SN 2003Z, SN 2004eg and SN 2006ov. This new sample of lowluminosity SNe IIP (LL SNe IIP) is analysed together with similar objects studied in the past. All of them show a flat light-curve plateau lasting about 100 d, an underluminous late-time exponential tail, intrinsic colours that are unusually red, and spectra showing prominent and narrow P Cygni lines. A velocity of the ejected material below 103 km s-1 is inferred from measurements at the end of the plateau. The 56Ni masses ejected in the explosion are very small (≤10-2 M⊙). We investigate the correlations among 56Ni mass, expansion velocity of the ejecta and absolute magnitude in the middle of the plateau, confirming the main findings of Hamuy, according to which events showing brighter plateau and larger expansion velocities are expected to produce more 56Ni. We propose that these faint objects represent the LL tail of a continuous distribution in parameters space of SNe IIP. The physical properties of the progenitors at the explosion are estimated through the hydrodynamical modelling of the observables for two representative events of this class, namely SN 2005cs and SN 2008in. We find that the majority of LL SNe IIP, and quite possibly all, originate in the core collapse of intermediate-mass stars, in the mass range 10-15 M⊙.
Resumo:
We present nebular-phase optical and near-infrared spectroscopy of the Type IIP supernova SN 2012aw combined with non-local thermodynamic equilibrium radiative transfer calculations applied to ejecta from stellar evolution/explosion models. Our spectral synthesis models generally show good agreement with the ejecta from a MZAMS = 15 M⊙progenitor star. The emission lines of oxygen, sodium, and magnesium are all consistent with the nucleosynthesis in a progenitor in the 14-18 M⊙ range.We also demonstrate how the evolution of the oxygen cooling lines of [O I] λ5577, [O I] λ6300, and [O I] λ6364 can be used to constrain the mass of oxygen in the non-molecularly cooled ashes to < 1 M⊙, independent of the mixing in the ejecta. This constraint implies that any progenitor model of initial mass greater than 20 M⊙ would be difficult to reconcile with the observed line strengths. A stellar progenitor of around MZAMS = 15 M⊙ can consistently explain the directly measured luminosity of the progenitor star, the observed nebular spectra, and the inferred pre-supernova mass-loss rate.We conclude that there is still no convincing example of a Type IIP supernova showing the nucleosynthesis products expected from an MZAMS > 20 M⊙ progenitor. © 2014 The Author. Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
We report the results of our search for the progenitor candidate of SN 2013dk, a Type Ic supernova (SN) that exploded in the Antennae galaxy system. We compare pre-explosion Hubble Space Telescope (HST) archival images with SN images obtained using adaptive optics at the ESO Very Large Telescope. We isolate the SN position to within 3σ uncertainty radius of 0.02 arcsec and show that there is no detectable point source in any of the HST filter images within the error circle. We set an upper limit to the absolute magnitude of the progenitor to be MF555W ≳ -5.7, which does not allow Wolf-Rayet (WR) star progenitors to be ruled out. A bright source appears 0.17 arcsec away, which is either a single bright supergiant or compact cluster, given its absolute magnitude of MF555W = -9.02 ± 0.28 extended wings and complex environment. However, even if this is a cluster, the spatial displacement of SN 2013dk means that its membership is not assured. The strongest statement that we can make is that in the immediate environment of SN 2013dk (within 10 pc or so), we find no clear evidence of either a point source coincident with the SN or a young stellar cluster that could host a massive WR progenitor.
Resumo:
We present optical and near-infrared (NIR) photometry and NIR spectroscopy of SN 2004am, the only optically detected supernova (SN) in M82. These demonstrate that SN 2004am was a highly reddened Type II-P SN similar to the low-luminosity Type II-P events such as SNe 1997D and 2005cs. We show that SN 2004am was located coincident with the obscured super star cluster M82-L, and from the cluster age infer a progenitor mass of 12{^{+ 7}_{- 3}} M⊙. In addition to this, we present a high spatial resolution Gemini-North Telescope K-band adaptive optics image of the site of SN 2008iz and a second transient of uncertain nature, both detected so far only at radio wavelengths. Using image subtraction techniques together with archival data from the Hubble Space Telescope, we are able to recover a NIR transient source coincident with both objects. We find the likely extinction towards SN 2008iz to be not more than AV ˜ 10. The nature of the second transient remains elusive and we regard an extremely bright microquasar in M82 as the most plausible scenario.
Resumo:
We present observations of the unusual optical transient SN 2010U, including spectra taken 1.03 days to 15.3 days after maximum light that identify it as a fast and luminous Fe II type nova. Our multi-band light curve traces the fast decline (t 2 = 3.5 ± 0.3 days) from maximum light (MV = -10.2 ± 0.1 mag), placing SN 2010U in the top 0.5% of the most luminous novae ever observed. We find typical ejecta velocities of ≈1100 km s-1 and that SN 2010U shares many spectral and photometric characteristics with two other fast and luminous Fe II type novae, including Nova LMC 1991 and M31N-2007-11d. For the extreme luminosity of this nova, the maximum magnitude versus rate of decline relationship indicates a massive white dwarf (WD) progenitor with a low pre-outburst accretion rate. However, this prediction is in conflict with emerging theories of nova populations, which predict that luminous novae from massive WDs should preferentially exhibit an alternate spectral type (He/N) near maximum light.
Resumo:
We assemble a sample of 24 hydrogen-poor superluminous supernovae(SLSNe). Parameterizing the light-curve shape through rise and declinetime-scales shows that the two are highly correlated. Magnetar-poweredmodels can reproduce the correlation, with the diversity in rise anddecline rates driven by the diffusion time-scale. Circumstellarinteraction models can exhibit a similar rise-decline relation, but onlyfor a narrow range of densities, which may be problematic for thesemodels. We find that SLSNe are approximately 3.5 mag brighter and havelight curves three times broader than SNe Ibc, but that the intrinsicshapes are similar. There are a number of SLSNe with particularly broadlight curves, possibly indicating two progenitor channels, butstatistical tests do not cleanly separate two populations. The generalspectral evolution is also presented. Velocities measured from Fe II aresimilar for SLSNe and SNe Ibc, suggesting that diffusion timedifferences are dominated by mass or opacity. Flat velocity evolution inmost SLSNe suggests a dense shell of ejecta. If opacities in SLSNe aresimilar to other SNe Ibc, the average ejected mass is higher by a factor2-3. Assuming κ = 0.1 cm2 g-1, we estimate amean (median) SLSN ejecta mass of 10 M⊙ (6M⊙), with a range of 3-30 M⊙. Doubling theassumed opacity brings the masses closer to normal SNe Ibc, but with ahigh-mass tail. The most probable mechanism for generating SLSNe seemsto be the core collapse of a very massive hydrogen-poor star, forming amillisecond magnetar.
Resumo:
We present optical and near-infrared (NIR) photometry and spectroscopy as well as modelling of the lightcurves of the Type IIb supernova (SN) 2011dh. Our extensive dataset, for which we present the observations obtained after day 100, spans two years, and complemented with Spitzer mid-infrared (MIR) data, we use it to build an optical-to-MIR bolometric lightcurve between days 3 and 732. To model the bolometric lightcurve before day 400 we use a grid of hydrodynamical SN models, which allows us to determine the errors in the derived quantities, and a bolometric correction determined with steady-state non-local thermodynamic equilibrium (NLTE) modelling. Using this method we find a helium core mass of 3.1<sup>+0.7</sup><inf>-0.4</inf> M<inf>⊙</inf> for SN 2011dh, consistent within error bars with previous results obtained using the bolometric lightcurve before day 80. We compute bolometric and broad-band lightcurves between days 100 and 500 from spectral steady-state NLTE models, presented and discussed in a companion paper. The preferred 12 M<inf>⊙</inf> (initial mass) model, previously found to agree well with the observed spectra, shows a good overall agreement with the observed lightcurves, although some discrepancies exist. Time-dependent NLTE modelling shows that after day ∼600 a steady-state assumption is no longer valid. The radioactive energy deposition in this phase is likely dominated by the positrons emitted in the decay of <sup>56</sup>Co, but seems insufficient to reproduce the lightcurves, and what energy source is dominating the emitted flux is unclear. We find an excess in the K and the MIR bands developing between days 100 and 250, during which an increase in the optical decline rate is also observed. A local origin of the excess is suggested by the depth of the He I 20 581 Å absorption. Steady-state NLTE models with a modest dust opacity in the core (τ = 0.44), turned on during this period, reproduce the observed behaviour, but an additional excess in the Spitzer 4.5 μm band remains. Carbon-monoxide (CO) first-overtone band emission is detected at day 206, and possibly at day 89, and assuming the additional excess to bedominated by CO fundamental band emission, we find fundamental to first-overtone band ratios considerably higher than observed in SN 1987A. The profiles of the [O i] 6300 Å and Mg i] 4571 Å lines show a remarkable similarity, suggesting that these lines originate from a common nuclear burning zone (O/Ne/Mg), and using small scale fluctuations in the line profiles we estimate a filling factor of ≲ 0.07 for the emitting material. This paper concludes our extensive observational and modelling work on SN 2011dh. The results from hydrodynamical modelling, steady-state NLTE modelling, and stellar evolutionary progenitor analysis are all consistent, and suggest an initial mass of ∼12 M<inf>⊙</inf> for the progenitor.
Resumo:
We present results based on observations of SN 2015H which belongs to the small group of objects similar to SN 2002cx, otherwise known as type Iax supernovae. The availability of deep pre-explosion imaging allowed us to place tight constraints on the explosion epoch. Our observational campaign began approximately one day post-explosion, and extended over a period of about 150 days post maximum light, making it one of the best observed objects of this class to date. We find a peak magnitude of Mr = -17.27± 0.07, and a (Δm15)r = 0.69 ± 0.04. Comparing our observations to synthetic spectra generated from simulations of deflagrations of Chandrasekhar mass carbon-oxygen white dwarfs, we find reasonable agreement with models of weak deflagrations that result in the ejection of ∼0.2 M⊙ of material containing ∼0.07 M⊙ of 56Ni. The model light curve however, evolves more rapidly than observations, suggesting that a higher ejecta mass is to be favoured. Nevertheless, empirical modelling of the pseudo-bolometric light curve suggests that ≲ 0.6 M⊙ of material was ejected, implying that the white dwarf is not completely disrupted, and that a bound remnant is a likely outcome.
Resumo:
We present a photometric and spectroscopic study of a reddened type Ic supernova (SN) 2005at. We report our results based on the available data of SN 2005at, including late-time observations from the Spitzer Space Telescope and the Hubble Space Telescope. In particular, late-time mid-infrared observations are something rare for type Ib/c SNe. In our study we find SN 2005at to be very similar photometrically and spectroscopically to another nearby type Ic SN 2007gr, underlining the prototypical nature of this well-followed type Ic event. The spectroscopy of both events shows similar narrow spectral line features. The radio observations of SN 2005at are consistent with fast evolution and low luminosity at radio wavelengths. The late-time Spitzer data suggest the presence of an unresolved light echo from interstellar dust and dust formation in the ejecta, both of which are unique observations for a type Ic SN. The late-time Hubble observations reveal a faint point source coincident with SN 2005at, which is very likely either a declining light echo of the SN or a compact cluster. For completeness we study ground-based pre-explosion archival images of the explosion site of SN 2005at, however this only yielded very shallow upper limits for the SN progenitor star. We derive a host galaxy extinction of AV ∼ 1.9 mag for SN 2005at, which is relatively high for a SN in a normal spiral galaxy not viewed edge-on.
Resumo:
The gravitationally confined detonation (GCD) model has been proposed as a possible explosion mechanism for Type Ia supernovae in the single-degenerate evolution channel. It starts with ignition of a deflagration in a single off-centre bubble in a near-Chandrasekhar-mass white dwarf. Driven by buoyancy, the deflagration flame rises in a narrow cone towards the surface. For the most part, the main component of the flow of the expanding ashes remains radial, but upon reaching the outer, low-pressure layers of the white dwarf, an additional lateral component develops. This causes the deflagration ashes to converge again at the opposite side, where the compression heats fuel and a detonation may be launched. We first performed five three-dimensional hydrodynamic simulations of the deflagration phase in 1.4 M⊙ carbon/oxygen white dwarfs at intermediate-resolution (2563computational zones). We confirm that the closer the initial deflagration is ignited to the centre, the slower the buoyant rise and the longer the deflagration ashes takes to break out and close in on the opposite pole to collide. To test the GCD explosion model, we then performed a high-resolution (5123 computational zones) simulation for a model with an ignition spot offset near the upper limit of what is still justifiable, 200 km. This high-resolution simulation met our deliberately optimistic detonation criteria, and we initiated a detonation. The detonation burned through the white dwarf and led to its complete disruption. For this model, we determined detailed nucleosynthetic yields by post-processing 106 tracer particles with a 384 nuclide reaction network, and we present multi-band light curves and time-dependent optical spectra. We find that our synthetic observables show a prominent viewing-angle sensitivity in ultraviolet and blue wavelength bands, which contradicts observed SNe Ia. The strong dependence on the viewing angle is caused by the asymmetric distribution of the deflagration ashes in the outer ejecta layers. Finally, we compared our model to SN 1991T. The overall flux level of the model is slightly too low, and the model predicts pre-maximum light spectral features due to Ca, S, and Si that are too strong. Furthermore, the model chemical abundance stratification qualitatively disagrees with recent abundance tomography results in two key areas: our model lacks low-velocity stable Fe and instead has copious amounts of high-velocity 56Ni and stable Fe. We therefore do not find good agreement of the model with SN 1991T.
Resumo:
Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses similar to 1.1 M-aS (TM), hybrid WDs in a binary system may easily approach the Chandrasekhar mass (M-Ch) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-M-Ch hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 M-aS (TM) of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-M-Ch WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-M-Ch bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching M-Ch to be of the order of 1 per cent of the Galactic SN Ia rate.
Resumo:
The fortuitous occurrence of a type II-Plateau (IIP) supernova, SN 2014bc, in a galaxy for which distance estimates from a number of primary distance indicators are available provides a means with which to cross-calibrate the standardised candle method (SCM) for type IIP SNe. By applying calibrations from the literature we find distance estimates in line with the most precise measurement to NGC 4258 based on the Keplerian motion of masers (7:6 ± 0:23 Mpc), albeit with significant scatter. We provide an alternative local SCM calibration by only considering type IIP SNe that have occurred in galaxies for which a Cepheid distance estimate is available. We find a considerable reduction in scatter (σ<inf>I</inf> = 0:16 mag), but note that the current sample size is limited. Applying this calibration, we estimate a distance to NGC 4258 of 7:08 ± 0:86 Mpc.
Resumo:
We present optical and infrared monitoring data of SN 2012hn collectedby the Public European Southern Observatory Spectroscopic Survey forTransient Objects. We show that SN 2012hn has a faint peak magnitude(MR ˜ -15.65) and shows no hydrogen and no clearevidence for helium in its spectral evolution. Instead, we detectprominent Ca II lines at all epochs, which relates this transient topreviously described `Ca-rich' or `gap' transients. However, thephotospheric spectra (from -3 to +32 d with respect to peak) of SN2012hn show a series of absorption lines which are unique and a redcontinuum that is likely intrinsic rather than due to extinction. Linesof Ti II and Cr II are visible. This may be a temperature effect, whichcould also explain the red photospheric colour. A nebular spectrum at+150 d shows prominent Ca II, O I, C I and possibly Mg I lines whichappear similar in strength to those displayed by core-collapsesupernovae (SNe). To add to the puzzle, SN 2012hn is located at aprojected distance of 6 kpc from an E/S0 host and is not close to anyobvious star-forming region. Overall SN 2012hn resembles a group offaint H-poor SNe that have been discovered recently and for which aconvincing and consistent physical explanation is still missing. Theyall appear to explode preferentially in remote locations offset from amassive host galaxy with deep limits on any dwarf host galaxies,favouring old progenitor systems. SN 2012hn adds heterogeneity to thissample of objects. We discuss potential explosion channels includingHe-shell detonations and double detonations of white dwarfs as well aspeculiar core-collapse SNe.
Resumo:
Aims
The aim of this paper is twofold: 1) to investigate the properties of extragalactic dust and compare them to what is seen in the Galaxy; 2) to address in an independent way the problem of the anomalous extinction curves reported for reddened Type Ia Supernovae (SN) in connection to the environments in which they explode.
Methods
The properties of the dust are derived from the wavelength dependence of the continuum polarization observed in four reddened Type Ia SN: 1986G, 2006X, 2008fp, and 2014J. The method is based on the observed fact that Type Ia SN have a negligible intrinsic continuum polarization. This and their large luminosity makes them ideal tools to probe the dust properties in extragalactic environments.
Results
All four objects are characterized by exceptionally low total-to-selective absorption ratios (R<inf>V</inf>) and display an anomalous interstellar polarization law, characterized by very blue polarization peaks. In all cases the polarization position angle is well aligned with the local spiral structure. While SN 1986G is compatible with the most extreme cases of interstellar polarization known in the Galaxy, SN 2006X, 2008fp, and 2014J show unprecedented behaviours. The observed deviations do not appear to be connected to selection effects related to the relatively large amounts of reddening characterizing the objects in the sample.
Conclusions
The dust responsible for the polarization of these four SN is most likely of interstellar nature. The polarization properties can be interpreted in terms of a significantly enhanced abundance of small grains. The anomalous behaviour is apparently associated with the properties of the galactic environment in which the SN explode, rather than with the progenitor system from which they originate. For the extreme case of SN 2014J, we cannot exclude the contribution of light scattered by local material; however, the observed polarization properties require an ad hoc geometrical dust distribution.