57 resultados para spool-and-line device
Resumo:
Aims.
In this paper we report calculations for energy levels, radiative rates, and electron impact excitation rates for transitions in O vii.
Methods.
The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative
rates. For determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) and the
flexible atomic code (fac) are used.
Results.
Oscillator strengths, radiative rates, and line strengths are reported for all E1, E2, M1, and M2 transitions among the lowest
49 levels of O vii. Collision strengths have been averaged over a Maxwellian velocity distribution, and the resulting effective collision
strengths are reported over a wide temperature range below 2 × 106 K. Additionally, lifetimes are also listed for all levels.
Key words.
Resumo:
Aims. In this paper we report on calculations for energy levels, radiative rates, collision strengths, and effective collision strengths for transitions among the lowest 25 levels of the n $\le$ 5 configurations of H-like Fe XXVI.
Methods. The general-purpose relativistic atomic structure package (GRASP) and Dirac atomic R-matrix code (DARC) are adopted for the calculations.
Results. Radiative rates, oscillator strengths, and line strengths are reported for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among the 25 levels. Furthermore, collision strengths and effective collision strengths are reported for all the 300 transitions among the above 25 levels over a wide energy (temperature) range up to 1500 Ryd (107.7 K). Comparisons are made with earlier available results and the accuracy of the data is assessed.
Resumo:
We report calculations for energy levels, radiative rates and electron impact excitation rates for transitions in He-like Li II, Be III, B IV and C V. grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Collision strengths have been averaged over a Maxwellian velocity distribution and the effective collision strengths so obtained are reported over a wide temperature range up to 10(6) K. Comparisons have been made with similar data obtained from the flexible atomic code (FAC) to highlight the importance of resonances, included in calculations from darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for weak transitions and at low energies, have also been discussed. Additionally, lifetimes are also listed for all calculated levels of the above four ions.
Resumo:
In this paper, we report calculations of energy levels, radiative rates and electron impact excitation rates for transitions in Li-like Si XII, He-like Si XIII and H-like Si XIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 24 levels of Si XII, 49 levels of Si XIII and 25 levels of Si XIV, belonging to the n≤5 configurations. Collision strengths have been averaged over a Maxwellian electron velocity distribution and the effective collision strengths so obtained are reported over a wide temperature range below 107 K. Comparisons have been made with similar data obtained from the flexible atomic code (fac) to highlight the importance of resonances, included in calculations from darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for weak transitions and at low energies, are also discussed. Additionally, lifetimes are listed for all calculated levels of the above three ions, although no measurements are available with which to compare.
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation rates for transitions in H-like N VII, O VIII, F IX, Ne X and Na XI. The general-purpose relativistic atomic structure package (grasp) is adopted for calculating energy levels and radiative rates, while the Dirac atomic R-matrix code (DARC) and the flexible atomic code (FAC) are used for determining the collision strengths and subsequently the excitation rates. Oscillator strengths, radiative rates and line strengths are listed for all E1, E2, M1 and M2 transitions among the lowest 25 levels of the above five ions. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths so obtained are reported over a wide temperature range below 10(7) K. Additionally, lifetimes are also given for all the calculated energy levels of the above five ions.
Resumo:
In this paper, we report calculations of energy levels, radiative rates and electron impact excitation rates for transitions in Li-like N V, F VII, Ne VIII and Na IX. The general-purpose relativistic atomic structure package (GRASP) is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (DARC) and the flexible atomic code (FAC) are used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 24 levels of N V, F VII, Ne VIII and Na IX. Collision strengths have been averaged over a Maxwellian velocity distribution and the effective collision strengths so obtained are reported over a wide temperature range below 10(6.6) K. Additionally, lifetimes are also reported for all calculated levels of the above four ions.
Resumo:
Aims. In this paper we report on calculations of energy levels, radiative rates, oscillator strengths, line strengths, and effective collision strengths for transitions among the lowest 362 levels of the (1s22s22p6) 3s23p5, 3s3p6, 3s23p43d, 3s3p53d, 3s23p33d2, 3s3p43d2, 3p63d, and 3s23p44 configurations of Cr viii. Methods. The general-purpose relativistic atomic structure package (grasp) and flexible atomic code (fac) are adopted for the calculations. Results. Radiative rates, oscillator strengths, and line strengths are reported for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among the 362 levels. Comparisons are made with earlier available results and the accuracy of the data is assessed. Additionally, lifetimes for all 362 levels are listed, although comparisons with other theoretical results are limited to only a few levels. Our energy levels are estimated to be accurate to better than 3% (within 0.4 Ryd), whereas results for other parameters are probably accurate to better than 20%. Finally, electron impact collision strengths and excitation rates are computed for all transitions over a wide energy (temperature) range. For these calculations, FAC is adopted and results in the form of effective collision strengths are reported over a wide temperature range of 105.0−106.6 K.
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation cross
sections and rates for transitions in He-like Cl XVI, K XVIII, Ca XIX and Sc XX. The grasp
(general-purpose relativistic atomic structure package) is adopted for calculating energy levels
and radiative rates. To determine the collision strengths and subsequently the excitation rates,
the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line
strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of
each ion. Collision strengths are averaged over a Maxwellian velocity distribution and the
effective collision strengths obtained listed over a wide temperature range up to 107.4 K.
Comparisons are made with similar data obtained from the flexible atomic code (fac) to
highlight the importance of resonances, included in calculations with darc, in the
determination of effective collision strengths. Discrepancies between the collision strengths
from darc and fac, particularly for forbidden transitions, are also discussed. Additionally,
theoretical lifetimes are listed for all the 49 levels of the above four ions.
Resumo:
The formation of various coatings in molybdenum-boron and molybdenum-silicon systems was investigated. Boronizing and siliciding treatments were conducted in molten salts under inert gas atmosphere in the 850-1050 degrees C temperature range for 7 h. The presence of boride (e.g. Mo2B, MoB, Mo2B5) and silicide (MoSi2, Mo5Si3) phases, formed on the surface of Mo plates, was confirmed by X-ray diffraction analysis. The distribution of elements was determined by means of wavelength dispersive spectroscopy (WDS) spectra of the surface and line-scan analyses from surface to interior. Depending on the process type (diffusional or electrochemical) and temperature, the thickness of the protective layers formed on the substrate ranged from 6 to 40 gm. The oxidation resistance of obtained phases was investigated in an air-water mixture in the temperature range of 500-700 degrees C for a period up to 400 h. An improved oxidation behavior of coated plates in comparison with that of pure molybdenum was observed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
An analysis of ≃19 500 narrow (≲200 km s-1) CIV λλ1548.2,1550.8 absorbers in ≃34 000 Sloan Digital Sky Survey quasar spectra is presented. The statistics of the number of absorbers as a function of outflow velocity shows that in approximately two-thirds of outflows, with multiple C IV absorbers present, absorbers are line-locked at the 500 km s-1 velocity separation of the C IV absorber doublet; appearing as 'triplets' in the quasar spectra. Line-locking is an observational signature of radiative line-driving in outflowing material, where the successive shielding of 'clouds' of material in the outflow locks the clouds together in outflow velocity. Line-locked absorbers are seen in both broad absorption line (BAL) quasars and non-BAL quasars with comparable frequencies and with velocities out to at least 20 000 km s-1. There are no detectable differences in the absorber properties and the dust content of single C IV doublets and line-locked C IV doublets. The gas associated with both single and line-locked CIV absorption systems includes material with a wide range of ionization potential (14-138 eV). Both single and line-locked CIV absorber systems show strong systematic trends in their ionization as a function of outflow velocity, with ionization decreasing rapidly with increasing outflow velocity. Initial simulations, employing CLOUDY, demonstrate that a rich spectrum of line-locked signals at various velocities may be expected due to significant opacities from resonance lines of Li-, He- and H-like ions of O, C and N, along with contributions from He II and HI resonance lines. The simulations confirm that line-driving can be the dominant acceleration mechanism for clouds with N(H I) ≃ 1019 cm-2.
Resumo:
Results for energy levels, radiative rates and electron impact excitation (effective) collision strengths for transitions in Be-like Cl XIV, K XVI and Ge XXIX are reported. For the calculations of energy levels and radiative rates the general-purpose relativistic atomic structure package is adopted, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code is used. Oscillator strengths, radiative rates and line strengths are listed for all E1, E2, M1 and M2 transitions among the lowest 98 levels of the n ≤ 4 configurations. Furthermore, lifetimes are provided for all levels and comparisons made with available theoretical and experimental results. Resonances in the collision strengths are resolved in a fine energy mesh and averaged over a Maxwellian velocity distribution to obtain the effective collision strengths. Results obtained are listed over a wide temperature range up to 107.8 K, depending on the ion.
Resumo:
We report calculations of energy levels, radiative rates, oscillator strengths and line strengths for transitions among the lowest 231 levels of Ti VII. The general-purpose relativistic atomic structure package and flexible atomic code are adopted for the calculations. Radiative rates, oscillator strengths and line strengths are provided for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions among the 231 levels, although calculations have been performed for a much larger number of levels (159 162). In addition, lifetimes for all 231 levels are listed. Comparisons are made with existing results and the accuracy of the data is assessed. In particular, the most recent calculations reported by Singh et al (2012 Can. J. Phys. 90 833) are found to be unreliable, with discrepancies for energy levels of up to 1 Ryd and for radiative rates of up to five orders of magnitude for several transitions, particularly the weaker ones. Based on several comparisons among a variety of calculations with two independent codes, as well as with the earlier results, our listed energy levels are estimated to be accurate to better than 1% (within 0.1 Ryd), whereas results for radiative rates and other related parameters should be accurate to better than 20%.
Resumo:
We report on calculations of energy levels, radiative rates, oscillator strengths and line strengths for transitions among the lowest 253 levels of the (1s22s22p6 ) 3s23p5 , 3s3p6 , 3s23p43d, 3s3p53d, 3s23p33d2 , 3s23p44s, 3s23p44p and 3s23p44d configurations of Ti VI. The general-purpose relativistic atomic structure package and flexible atomic code are adopted for the calculations. Radiative rates, oscillator strengths and line strengths are reported for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions among the 253 levels, although calculations have been performed for a much larger number of levels. Comparisons are made with existing available results and the accuracy of the data is assessed. Additionally, lifetimes for all 253 levels are listed, although comparisons with other theoretical results are limited to only 88 levels. Our energy levels are estimated to be accurate to better than 1% (within 0.03 Ryd), whereas results for other parameters are probably accurate to better than 20%. A reassessment of the energy level data on the National Institute of Standards and Technology website for Ti VI is suggested.
Resumo:
We report calculations of energy levels, radiative rates, oscillator strengths and line strengths for transitions among the lowest 345 levels of Ti X. These include 146 levels of the n 3 configurations and 86 of 3s 24ℓ, 3s25ℓ and 3s3p4ℓ, plus some of the 3s26ℓ, 3p24ℓ and 3s3p5ℓ levels. The general-purpose relativistic atomic structure package and flexible atomic code are adopted for the calculations. Radiative rates, oscillator strengths and line strengths are provided for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions among the 345 levels, although calculations have been performed for a much larger number of levels. Comparisons are made with existing results and the accuracy of the data is assessed. Additionally, lifetimes for all 345 levels are listed. Extensive comparisons of lifetimes are made for the lowest 40 levels, for which discrepancies with recent theoretical work are up to 30%. Discrepancies in lifetimes are even larger, up to a factor of four, for higher excited levels. Furthermore, the effect of large configuration interaction (CI) is found to be insignificant for both the energies and lifetimes for the lowest 40 levels of Ti X which belong to the 3s23p, 3s3p2, 3s23d, 3p3 and 3s3p3d configurations. However, the contribution of CI is more appreciable for the energy levels and radiative rates among higher excited levels. Our listed energy levels are estimated to be accurate to better than 1% (within 0.1 Ryd), whereas results for other parameters are probably accurate to better than 20%. © 2013 The Royal Swedish Academy of Sciences.