21 resultados para spin dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide an extensive discussion on a scheme for Hamiltonian tomography of a spin-chain model that does not require state initialization [Phys. Rev. Lett. 102 ( 2009) 187203]. The method has spurred the attention of the physics community interested in indirect acquisition of information on the dynamics of quantum many-body systems and represents a genuine instance of a control-limited quantum protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the transport of quantum correlations across a chain of interacting spin-1/2 particles. As a quantitative figure of merit, we choose a symmetric version of quantum discord and compare it with the transported entanglement, addressing various operating regimes of the spin medium. Discord turns out to be better transported for a wide range of working points and initial conditions of the system. We relate this behavior to the efficiency of propagation of a single excitation across the spin chain. Moreover, we point out the role played by a magnetic field in the dynamics of discord in the effective channel embodied by the chain. Our analysis can be interestingly extended to transport processes in more complex networks and the study of nonclassical correlations under general quantum channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the role played by system-environment correlations in the emergence of non-Markovian dynamics. By working within the framework developed in Breuer et al. [Phys. Rev. Lett. 103, 210401 (2009)], we unveil a fundamental connection between non-Markovian behavior and dynamics of system-environment correlations. We derive an upper bound to the rate of change of the distinguishability between different states of the system that explicitly depends on the establishment of correlations between system and environment. We illustrate our results using a fully solvable spin-chain model, which allows us to gain insight into the mechanisms triggering non-Markovian evolution. © 2012 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of applied magnetic fields on the collective nonequilibrium dynamics of a strongly interacting Fe-C nanoparticle system has been investigated. It is experimentally shown that the magnetic aging diminishes to finally disappear for fields of moderate strength. The field needed to remove the observable aging behavior increases with decreasing temperature. The same qualitative behavior is observed in an amorphous metallic spin glass (Fe0.15Ni0.85)(75)P16B6Al3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the conditions under which the trace distance between two different states of a given open system increases in time due to the interaction with an environment, therefore signaling non-Markovianity. We find that the finite-time difference in trace distance is bounded by two sharply defined quantities that are strictly linked to the occurrence of system-environment correlations created throughout their interaction and affecting the subsequent evolution of the system. This allows us to shed light on the origin of non-Markovian behaviors in quantum dynamics. We best illustrate our findings by tackling two physically relevant examples: a non-Markovian dephasing mechanism that has been the focus of a recent experimental endeavor and the open-system dynamics experienced by a spin connected to a finite-size quantum spin chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the non-equilibrium dynamics of a simple system consisting of interacting spin-1/2 particles subjected to a collective damping. The model is close to situations that can be engineered in hybrid electro/opto-mechanical settings. Making use of large-deviation theory, we find a Gallavotti-Cohen symmetry in the dynamics of the system as well as evidence for the coexistence of two dynamical phases with different activity levels. We show that additional damping processes smooth out this behavior. Our analytical results are backed up by Monte Carlo simulations that reveal the nature of the trajectories contributing to the different dynamical phases.