48 resultados para speaker recognition systems
Resumo:
This article gives an extensive overview of the wide range of analytical procedures developed for the detection of amphenicol antibiotic residues (chloramphenicol, thiamphenicol, and florfenicol) in many different types of foodstuffs (milk, meat, eggs, honey, seafood). Screening methods such as microbial inhibition methods, antibody-based immunoassays using conventional and biosensor-based detection systems, and some methods based on alternative recognition systems are described. The relative advantages and disadvantages of these methods are discussed and compared. The current status and future trends and developments in the need for accurate and rapid detection of this group of antimicrobials are also discussed.
Resumo:
We present results of a study into the performance of a variety of different image transform-based feature types for speaker-independent visual speech recognition of isolated digits. This includes the first reported use of features extracted using a discrete curvelet transform. The study will show a comparison of some methods for selecting features of each feature type and show the relative benefits of both static and dynamic visual features. The performance of the features will be tested on both clean video data and also video data corrupted in a variety of ways to assess each feature type's robustness to potential real-world conditions. One of the test conditions involves a novel form of video corruption we call jitter which simulates camera and/or head movement during recording.
Resumo:
In this paper, we present a new approach to visual speech recognition which improves contextual modelling by combining Inter-Frame Dependent and Hidden Markov Models. This approach captures contextual information in visual speech that may be lost using a Hidden Markov Model alone. We apply contextual modelling to a large speaker independent isolated digit recognition task, and compare our approach to two commonly adopted feature based techniques for incorporating speech dynamics. Results are presented from baseline feature based systems and the combined modelling technique. We illustrate that both of these techniques achieve similar levels of performance when used independently. However significant improvements in performance can be achieved through a combination of the two. In particular we report an improvement in excess of 17% relative Word Error Rate in comparison to our best baseline system.
Resumo:
Aim The aim of the study is to evaluate factors that enable or constrain the implementation and service delivery of early warnings systems or acute care training in practice. Background To date there is limited evidence to support the effectiveness of acute care initiatives (early warning systems, acute care training, outreach) in reducing the number of adverse events (cardiac arrest, death, unanticipated Intensive Care admission) through increased recognition and management of deteriorating ward based patients in hospital [1-3]. The reasons posited are that previous research primarily focused on measuring patient outcomes following the implementation of an intervention or programme without considering the social factors (the organisation, the people, external influences) which may have affected the process of implementation and hence measured end-points. Further research which considers the social processes is required in order to understand why a programme works, or does not work, in particular circumstances [4]. Method The design is a multiple case study approach of four general wards in two acute hospitals where Early Warning Systems (EWS) and Acute Life-threatening Events Recognition and Treatment (ALERT) course have been implemented. Various methods are being used to collect data about individual capacities, interpersonal relationships and institutional balance and infrastructures in order to understand the intended and unintended process outcomes of implementing EWS and ALERT in practice. This information will be gathered from individual and focus group interviews with key participants (ALERT facilitators, nursing and medical ALERT instructors, ward managers, doctors, ward nurses and health care assistants from each hospital); non-participant observation of ward organisation and structure; audit of patients' EWS charts and audit of the medical notes of patients who deteriorated during the study period to ascertain whether ALERT principles were followed. Discussion & progress to date This study commenced in January 2007. Ethical approval has been granted and data collection is ongoing with interviews being conducted with key stakeholders. The findings from this study will provide evidence for policy-makers to make informed decisions regarding the direction for strategic and service planning of acute care services to improve the level of care provided to acutely ill patients in hospital. References 1. Esmonde L, McDonnell A, Ball C, Waskett C, Morgan R, Rashidain A et al. Investigating the effectiveness of Critical Care Outreach Services: A systematic review. Intensive Care Medicine 2006; 32: 1713-1721 2. McGaughey J, Alderdice F, Fowler R, Kapila A, Mayhew A, Moutray M. Outreach and Early Warning Systems for the prevention of Intensive Care admission and death of critically ill patients on general hospital wards. Cochrane Database of Systematic Reviews 2007, Issue 3. www.thecochranelibrary.com 3. Winters BD, Pham JC, Hunt EA, Guallar E, Berenholtz S, Pronovost PJ (2007) Rapid Response Systems: A systematic review. Critical Care Medicine 2007; 35 (5): 1238-43 4. Pawson R and Tilley N. Realistic Evaluation. London; Sage: 1997
Resumo:
We present a novel approach to goal recognition based on a two-stage paradigm of graph construction and analysis. First, a graph structure called a Goal Graph is constructed to represent the observed actions, the state of the world, and the achieved goals as well as various connections between these nodes at consecutive time steps. Then, the Goal Graph is analysed at each time step to recognise those partially or fully achieved goals that are consistent with the actions observed so far. The Goal Graph analysis also reveals valid plans for the recognised goals or part of these goals. Our approach to goal recognition does not need a plan library. It does not suffer from the problems in the acquisition and hand-coding of large plan libraries, neither does it have the problems in searching the plan space of exponential size. We describe two algorithms for Goal Graph construction and analysis in this paradigm. These algorithms are both provably sound, polynomial-time, and polynomial-space. The number of goals recognised by our algorithms is usually very small after a sequence of observed actions has been processed. Thus the sequence of observed actions is well explained by the recognised goals with little ambiguity. We have evaluated these algorithms in the UNIX domain, in which excellent performance has been achieved in terms of accuracy, efficiency, and scalability.
Resumo:
The authors are concerned with the development of computer systems that are capable of using information from faces and voices to recognise people's emotions in real-life situations. The paper addresses the nature of the challenges that lie ahead, and provides an assessment of the progress that has been made in the areas of signal processing and analysis techniques (with regard to speech and face), and the psychological and linguistic analyses of emotion. Ongoing developmental work by the authors in each of these areas is described.
Resumo:
Use of the Dempster-Shafer (D-S) theory of evidence to deal with uncertainty in knowledge-based systems has been widely addressed. Several AI implementations have been undertaken based on the D-S theory of evidence or the extended theory. But the representation of uncertain relationships between evidence and hypothesis groups (heuristic knowledge) is still a major problem. This paper presents an approach to representing such knowledge, in which Yen’s probabilistic multi-set mappings have been extended to evidential mappings, and Shafer’s partition technique is used to get the mass function in a complex evidence space. Then, a new graphic method for describing the knowledge is introduced which is an extension of the graphic model by Lowrance et al. Finally, an extended framework for evidential reasoning systems is specified.
Resumo:
In this paper we present the application of Hidden Conditional Random Fields (HCRFs) to modelling speech for visual speech recognition. HCRFs may be easily adapted to model long range dependencies across an observation sequence. As a result visual word recognition performance can be improved as the model is able to take more of a contextual approach to generating state sequences. Results are presented from a speaker-dependent, isolated digit, visual speech recognition task using comparisons with a baseline HMM system. We firstly illustrate that word recognition rates on clean video using HCRFs can be improved by increasing the number of past and future observations being taken into account by each state. Secondly we compare model performances using various levels of video compression on the test set. As far as we are aware this is the first attempted use of HCRFs for visual speech recognition.