214 resultados para skin electrode
Resumo:
Two novel bradykinin-related peptides (Ala3,Thr6)-bradykinin and (Val1,Thr3,Thr6)-bradykinin, were identified by a systematic sequencing study of peptides in the defensive skin secretion of the yellow-bellied toad, Bombina variegata. These peptides are the first amphibian skin bradykinins to exhibit amino acid substitutions at the Pro3 position of the bradykinin nonapeptide. Previously reported bradykinins from other Bombina species were not detected. Respective precursor cDNAs, designated BVK-1 and BVK-2, respectively, were cloned from a skin library by 3'- and 5'-RACE reactions. BVK-1 contained an open-reading frame of 97 amino acids encoding a single copy of (Ala3,Thr6)-bradykinin and similarly, the open-reading frame of BVK-2 consisted of 96 amino acids encoding a single copy of (Val1,Thr3,Thr6)-bradykinin. Synthetic replicates of each novel bradykinin were found to be active on mammalian arterial and small intestinal smooth muscle preparations. The structural diversity of bradykinins in amphibian defensive skin secretions may be related to defence against specific predators.
Resumo:
Amphibian defensive skin secretions remain a largely untapped resource for the peptide biochemist with an interest in the identification, structural characterization, and precursor cDNA cloning of novel bioactive peptides. Here we report the isolation, structural characterization, functional profiling, and nucleotide sequence of precursor cDNA of a novel histamine-releasing heptadecapeptide, FIPVTLLALHKIKEKLN-amide, from the defensive skin secretion of the African running frog, Kassina senegalensis. This peptide was found to be a potent histamine secretagogue (EC[5][0]=6 µM; maximal release = 25 µM) in a rat peritoneal mast cell model system and was accordingly named kassinakinin S. The open-reading frame of the cDNA encoding prepro-kassinakinin S was found to consist of 71 amino acid residues containing a single copy of kassinakinin S and its glycyl residue amide donor at the C-terminus. Kassinakinin S can thus be added to the growing list of amphibian skin bioactive peptide prototypes.
Resumo:
The defensive skin secretions of amphibians are a rich source of bioactive peptides. Here we describe a rapid technique for skin granular gland transcriptome cloning from a surrogate tissue-the secretion itself. cDNA libraries were constructed from lyophilized skin secretion from each of the Chinese frogs (Rana schmackeri, Rana versabilis, and Rana plancyi fukienensis) using magnetic oligo(dT) bead-captured polyadenylated mRNA as templates. Specific esculentin cDNAs were amplified by 3'-RACE using a degenerate primer designed for a consensus nucleotide sequence in the 5' untranslated region of previously characterized ranid frog peptide cDNAs. The cloned cDNAs were found to encode the antimicrobial peptides esculentins 1 and 2 from each of the species examined. The presence of predicted peptide structures in skin secretions was confirmed by MALDI-TOF mass spectrometry and automated Edman degradation. This experimental approach can thus rapidly expedite parallel transcriptome and peptidome analysis of amphibian granular gland secretions without harming or sacrificing donor animals.
Resumo:
Electron beam trajectory simulations have been performed to design a new electron beam ion trap. The design of the magnet and electrode structures was optimized based on the results of the simulations. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Metal nanoclusters can be produced cheaply and precisely in an electrochemical environment. Experimentally this method works in some systems, but not in others, and the unusual stability of the clusters has remained a mystery. We have simulated the deposition of the clusters using classical molecular dynamics and studied their stability by grand-canonical Monte Carlo simulations. We find that electrochemically stable clusters occur only in those cases where the two metals involved form stable alloys.
Resumo:
Although the ancient practice of traditional Chinese medicine (TCM) utilizes predominantly herbal ingredients, many of which are now the subject of intense scientific scrutiny, significant quantities of animal tissue-derived materials are also employed. Here we have used contemporary molecular techniques to study the material known as lin wa pi, the dried skin of the Heilongjiang brown frog, Rana amurensis, that is used commonly as an ingredient of many medicines, as a general tonic and as a topical antimicrobial/wound dressing. Using a simple technology that has been developed and validated over several years, we have demonstrated that components of both the skin granular gland peptidome and transcriptome persist in this material. Interrogation of the cDNA library constructed from the dried skin by entrapment and amplification of polyadenylated mRNA, using a "shotgun" primer approach and 3'-RACE, resulted in the cloning of cDNAs encoding the precursors of five putative antimicrobial peptides. Two (ranatuerin-2AMa and ranatuerin-2AMb) were obvious homologs of a previously described frog skin peptide family, whereas the remaining three were of sufficient structural novelty to be named amurins 1-3. Mature peptides were each identified in reverse phase HPLC fractions of boiling water extracts of skin and their structures confirmed by MS/MS fragmentation sequencing. Components of traditional Chinese medicines of animal tissue origin may thus contain biologically active peptides that survive the preparation procedures and that may contribute to therapeutic efficacy.