24 resultados para single-phase inverters


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single-phase magnetoelectric multiferroics are ferroelectric materials that display some form of magnetism. In addition, magnetic and ferroelectric order parameters are not independent of one another. Thus, the application of either an electric or magnetic field simultaneously alters both the electrical dipole configuration and the magnetic state of the material. The technological possibilities that could arise from magnetoelectric multiferroics are considerable and a range of functional devices has already been envisioned. Realising these devices, however, requires coupling effects to be significant and to occur at room temperature. Although such characteristics can be created in piezoelectric-magnetostrictive composites, to date they have only been weakly evident in single-phase multiferroics. Here in a newly discovered room temperature multiferroic, we demonstrate significant room temperature coupling by monitoring changes in ferroelectric domain patterns induced by magnetic fields. An order of magnitude estimate of the effective coupling coefficient suggests a value of ~1 × 10-7 sm-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Renewable energy is high on international and national agendas. Currently, grid-connected photovoltaic (PV) systems are a popular technology to convert solar energy into electricity. Existing PV panels have a relatively low and varying output voltage so that the converter installed between the PVs and the grid should be equipped with high step-up and versatile control capabilities. In addition, the output current of PV systems is rich in harmonics which affect the power quality of the grid. In this paper, a new multi-stage hysteresis control of a step-up DC-DC converter is proposed for integrating PVs into a single-phase power grid. The proposed circuitry and control method is experimentally validated by testing on a 600W prototype converter. The developed technology has significant economic implications and could be applied to many distributed generation (DG) systems, especially for the developing countries which have a large number of small PVs connected to their single-phase distribution network. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm−1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm−2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three-dimensional ordered mesoporous (3DOM) CuCo2O4 materials have been synthesized via a hard template and used as bifunctional electrocatalysts for rechargeable Li-O2 batteries. The characterization of the catalyst by X-ray diffractometry and transmission electron microscopy confirms the formation of a single-phase, 3-dimensional, ordered mesoporous CuCo2O4 structure. The as-prepared CuCo2O4 nanoparticles possess a high specific surface area of 97.1 m2 g- 1 and a spinel crystalline structure. Cyclic voltammetry demonstrates that mesoporous CuCo2O4 catalyst enhances the kinetics for either oxygen reduction reaction (ORR) or oxygen evolution reaction (OER). The Li-O2 battery utilizing 3DOM CuCo2O4 shows a higher specific capacity of 7456 mAh g- 1 than that with pure Ketjen black (KB). Moreover, the CuCo2O4-based electrode enables much enhanced cyclability with a 610 mV smaller discharge-recharge voltage gap than that of the carbon-only cathode at a current rate of 100 mA g- 1. Such excellent catalytic performance of CuCo2O4 could be associated with its larger surface area and 3D ordered mesoporous structure. The excellent electrochemical performances coupled with its facile and cost-effective way will render the 3D mesoporous CuCo2O4 nanostructures as attractive electrode materials for promising application in Li-O2 batteries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, Sr2Fe1.5Mo0.4Nb0.1O6-δ (SFMNb)-xSm0.2Ce0.8O2-δ (SDC) (x = 0, 20, 30, 40, 50 wt%) composite cathode materials were synthesized by a one-pot combustion method to improve the electrochemical performance of SFMNb cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). The fabrication of composite cathodes by adding SDC to SFMNb is conducive to providing extended electrochemical reaction zones for oxygen reduction reactions (ORR). X-ray diffraction (XRD) demonstrates that SFMNb is chemically compatible with SDC electrolytes at temperature up to 1100 °C. Scanning electron microscope (SEM) indicates that the SFMNb-SDC composite cathodes have a porous network nanostructure as well as the single phase SFMNb. The conductivity and thermal expansion coefficient of the composite cathodes decrease with the increased content of SDC, while the electrochemical impedance spectra (EIS) exhibits that SFMNb-40SDC composite cathode has optimal electrochemical performance with low polarization resistance (Rp) on the La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte. The Rp of the SFMNb-40SDC composite cathode is about 0.047 Ω cm2 at 800 °C in air. A single cell with SFMNb-40SDC cathode also displays favorable discharge performance, whose maximum power density is 1.22 W cm-2 at 800 °C. All results indicate that SFMNb-40SDC composite material is a promising cathode candidate for IT-SOFCs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemical uptake of oxygen on a Ru(0001) electrode was investigated by electron diffraction, Auger spectroscopy, and cyclic voltammetry. An ordered (2 × 2)-O overlayer forms at a potential close to the hydrogen region. At +0.42 and +1.12 V vs Ag/AgCl, a (3 × 1) phase and a (1 × 1)-O phase, respectively, emerge. When the Ru electrode potential is maintained at +1.12 V for 2 min, RuO2 grows epitaxially with its (100) plane parallel to the Ru(0001) surface. In contrast to the RuO domains, the non-oxidized regions of the Ru electrode surface are flat. If, however, the electrode potential is increased to +1.98 V for 2 min, the remaining non-oxidized Ru area also becomes rough. These findings are compared with O overlayers and oxides on the Ru(0001) and Ru(101¯1) surfaces created by exposure to gaseous O under UHV conditions. On the other hand, gas-phase oxidation of the Ru(101¯0) surface leads to the formation of RuO with a (100) orientation. It is concluded that the difference in surface energy between RuO(110) and RuO(100) is quite small. RuO again grows epitaxially on Ru(0001), but with the (110) face oriented parallel to the Ru(0001) surface. The electrochemical oxidation of the Ru(0001) electrode surface proceeds via a 3-dimensional growth mechanism with a mean cluster size of 1.6 nm, whereas under UHV conditions, a 2-dimensional oxide film (1-2 nm thick) is epitaxially formed with an average domain size of 20 µm. © 2000 American Chemical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: In the previously reported ALSYMPCA trial in patients with castration-resistant prostate cancer and symptomatic bone metastases, overall survival was significantly longer in patients treated with radium-223 dichloride (radium-223) than in patients treated with placebo. In this study, we investigated safety and overall survival in radium-223 treated patients in an early access programme done after the ALSYMPCA study and before regulatory approval of radium-223.

METHODS: We did an international, prospective, interventional, open-label, single-arm, phase 3b study. Enrolled patients were aged 18 years or older with histologically or cytologically confirmed progressive bone-predominant metastatic castration-resistant prostate cancer with two or more skeletal metastases on imaging (with no restriction as to whether they were symptomatic or asymptomatic; without visceral disease but lymph node metastases were allowed). Patients received intravenous injections of radium-223, 50 kBq/kg (current recommendation 55 kBq/kg after implementation of National Institute of Standards and Technology update on April 18, 2016) every 4 weeks for up to six injections. Other concomitant anticancer therapies were allowed. Primary endpoints were safety and overall survival. The safety and efficacy analyses were done on all patients who received at least one dose of the study drug. The study has been completed, and we report the final analysis here. This study is registered with ClinicalTrials.gov, number NCT01618370, and the European Union Clinical Trials Register, EudraCT number 2012-000075-16.

FINDINGS: Between July 22, 2012, and Dec 19, 2013, 839 patients were enrolled from 113 sites in 14 countries. 696 patients received one or more doses of radium-223; 403 (58%) of these patients had all six planned injections. Any-grade treatment-emergent adverse events occurred in 523 (75%) of 696 patients; any-grade treatment-emergent adverse events deemed to be related to treatment were reported in 281 (40%) patients. The most common grade 3 or worse treatment-related treatment-emergent adverse events were anaemia in 32 (5%) patients, thrombocytopenia in 15 (2%) patients, neutropenia in ten (1%) patients, and leucopenia in nine (1%) patients. Any grade of serious adverse events were reported in 243 (35%) patients. Median follow-up was 7·5 months (IQR 5-11) and 210 deaths were reported; median overall survival was 16 months (95% CI 13-not available [NA]). In an exploratory analysis of overall survival with predefined factors, median overall survival was longer for: patients with baseline alkaline phosphatase concentration less than the upper limit of normal (ULN; median NA, 95% CI 16 months-NA) than for patients with an alkaline phosphatase concentration equal to or greater than the ULN (median 12 months, 11-15); patients with baseline haemoglobin levels 10 g/dL or greater (median 17 months, 14-NA) than for patients with haemoglobin levels less than 10 g/dL (median 10 months, 8-14); patients with a baseline Eastern Cooperative Oncology Group performance status (ECOG PS) of 0 (median NA, 17 months-NA) than for patients with an ECOG PS of 1 (median 13 months, 11-NA) or an ECOG PS of 2 or more (median 7 months, 5-11); and for patients with no reported baseline pain (median NA, 16 months-NA) than for those with mild pain (median 14 months, 13-NA) or moderate-severe pain (median 11 months, 9-13). Median overall survival was also longer in patients who received radium-223 plus abiraterone, enzalutamide, or both (median NA, 95% CI 16 months-NA) than in those who did not receive these agents (median 13 months, 12-16), and in patients who received radium-223 plus denosumab (median NA, 15 months-NA) than in patients who received radium-223 without denosumab (median 13 months, 12-NA).

INTERPRETATION: Our findings show that radium-223 can be safely combined with abiraterone or enzalutamide, which are now both part of the standard of care for patients with metastatic castration-resistant prostate cancer. Furthermore, our findings extend to patients who were asymptomatic at baseline, unlike those enrolled in the pivotal ALSYMPCA study. The findings of prolonged survival in patients treated with concomitant abiraterone, enzalutamide, or denosumab require confirmation in prospective randomised trials.

FUNDING: Pharmaceutical Division of Bayer.