18 resultados para signal peptide


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amphibian skin secretions are rich sources of biologically-active peptides and several studies involving molecular cloning of their biosynthetic precursors have revealed that many exhibit highly-conserved domain architectures with an associated high degree of primary structural conservation of the signal peptides. This conservation of primary structure is reflected at the level of nucleotide sequence — a finding that has permitted our group to design primers to these sites facilitating “shotgun” cloning using cDNA libraries from uninvestigated species. Here we describe the results of such an approach using a skin secretion-derived cDNA library from the Fujian large-headed frog, Limnonectes fujianensis, a completely unstudied species. In over 50 clones studied by this approach, 12 were found to encode peptides of different primary structure. Representatives of 5 different families of antimicrobial peptides derived from the skins of ranid frogs were found and these were brevinin-1 (n = 3), the ranatuerin-2 (n = 3), esculentin-2 (n = 1), temporin (n = 1) and chensinin (n = 1). Three clones encoded peptides that were novel with no homologues present in contemporary on-line databases. These included two related 16-mer peptides, named peptides SC-16a and b, and an unrelated 24-mer, named peptide AG-24. Preliminary biological characterisation of SC-16a has demonstrated an antimicrobial activity against Gram-negative bacteria with a minimal inhibitory concentration of 35 µM with no observable haemolysis up to 200 µM. This finding may suggest that this peptide represents a novel class of antimicrobial with little effect on eukaryotic membranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that binds to diverse ligands and initiates a downstream proinflammatory signaling cascade. RAGE activation has been linked to diabetic complications, Alzheimer disease, infections, and cancers. RAGE is known to mediate cell signaling and downstream proinflammatory gene transcription activation, although the precise mechanism surrounding receptor-ligand interactions is still being elucidated. Recent fluorescence resonance energy transfer evidence indicates that RAGE may form oligomers on the cell surface and that this could be related to signal transduction. To investigate whether RAGE forms oligomers, protein-protein interaction assays were carried out. Here, we demonstrate the interaction between RAGE molecules via their N-terminal V domain, which is an important region involved in ligand recognition. By protein cross-linking using water-soluble and membrane-impermeable cross-linker bis(sulfosuccinimidyl) suberate and nondenaturing gels, we show that RAGE forms homodimers at the plasma membrane, a process potentiated by S100B and advanced glycation end products. Soluble RAGE, the RAGE inhibitor, is also capable of binding to RAGE, similar to V peptide, as shown by surface plasmon resonance. Incubation of cells with soluble RAGE or RAGE V domain peptide inhibits RAGE dimerization, subsequent phosphorylation of intracellular MAPK proteins, and activation of NF-kappa B pathways. Thus, the data indicate that dimerization of RAGE represents an important component of RAGE-mediated cell signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

B-type natriuretic peptide (BNP) is a prognostic and diagnostic marker for heart failure (HF). An anti-inflammatory, cardio-protective role for BNP was proposed. In cardiovascular diseases including pressure overload-induced HF, perivascular inflammation and cardiac fibrosis are, in part, mediated by monocyte chemoattractant protein (MCP)1-driven monocyte migration. We aimed to determine the role of BNP in monocyte motility to MCP1. A functional BNP receptor, natriuretic peptide receptor-A (NPRA) was identified in human monocytes. BNP treatment inhibited MCP1-induced THP1 (monocytic leukemia cells) and primary monocyte chemotaxis (70 and 50 %, respectively). BNP did not interfere with MCP1 receptor expression or with calcium. BNP inhibited activation of the cytoskeletal protein RhoA in MCP1-stimulated THP1 (70 %). Finally, BNP failed to inhibit MCP1-directed motility of monocytes from patients with hypertension (n = 10) and HF (n = 6) suggesting attenuation of this anti-inflammatory mechanism in chronic heart disease. We provide novel evidence for a direct role of BNP/NPRA in opposing human monocyte migration and support a role for BNP as a cardio-protective hormone up-regulated as part of an adaptive compensatory response to combat excess inflammation.