50 resultados para second generation leptoquarks
Resumo:
The dimerisation of cyclooctene (COE) to 1,9-cyclohexadecadiene, a molecule of interest to the fragrance industry, has been achieved using ruthenium catalysts in organic solvents with significantly better selectivities (47-74%) and yields (39-60%) than previously reported (34% and 30%, respectively). Grubbs' first and second generation catalysts, the Hoveyda-Grubbs' catalyst and a phosphonium alkylidene catalyst were tested in a range of organic solvents and ionic liquids (ILs), including 1:1 IL/dichloromethane mixtures and biphasic IL + pentane systems. The best results (74% selectivity, 60% yield) were obtained using Grubbs' first generation catalyst in 1,2-dichloroethane. The formation of trimer, tetramer and other higher molecular mass products were found to be favoured at low catalyst loadings (0.77 mM). Studies of metathesis reactions using 1,9-cyclohexadecadiene as substrate indicated that the monomer-dimer and monomer-trimer reactions are faster than the dimer-dimer reaction. The use of IL media allowed for the recyclability of the catalyst, although a drop in the yield of dimer generally occurred after the first run. Heterogeneized catalysts, where the IL-catalyst system was immobilised onto silica, resulted in fast reactions leading to poor yields of dimer. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper aims to contribute to the theorisation of midlife migration into rural areas. Although the factors influencing migration are known to be variable at different stages of a person's life, much less well understood is how migration decisions at different stages of the life course are connected and how post-migration experiences may be influenced by an earlier life course stage. We argue that midlife migration decisions are the product of the migrant's lifetime experiences and influences up until that stage in their life alongside their expectations and aspirations for future life course stages. Using a case study of the Glens of Antrim (Northern Ireland), this paper specifically demonstrates the role of childhood memories to explain midlife migration to a rural area. In doing so, it argues that some findings more commonly associated with second-generation transnational migration are also equally relevant to migration within the UK. Roots migration and place attachment alongside the midlife migrant's post-migration sense of belonging and permanency are found to be influenced by the migrant's earlier memories, behaviours, and experiences.
Resumo:
Usage of anticoagulant rodenticides (ARs) is an integral component of modern agriculture and is essential for the control of commensal rodent populations. However, the extensive deployment of ARs has led to widespread exposure of a range of non-target predatory birds and mammals to some compounds, in particular the second-generation anticoagulant rodenticides (SCARS). As a result, there has been considerable effort placed into devising voluntary best practice guidelines that increase the efficacy of rodent control and reduce the risk of non-target exposure. Currently, there is limited published information on actual practice amongst users or implementation of best practice. We assessed the behaviour of a typical group of users using an on-farm questionnaire survey. Most baited for rodents every year using SGARs. Most respondents were apparently aware of the risks of non-target exposure and adhered to some of the best practice recommendations but total compliance was rare. Our questionnaire revealed that users of first generation anticoagulant rodenticides rarely protected or checked bait stations, and so took little effort to prevent primary exposure of non-targets. Users almost never searched for and removed poisoned carcasses and many baited for prolonged periods or permanently. These factors are all likely to enhance the likelihood of primary and secondary exposure of non-target species. (C) 2010 Published by Elsevier Ltd.
Resumo:
Inhibition of the PI3K (phosphoinositide 3-kinase)/Akt/mTORC1 (mammalian target of rapamycin complex 1) and Ras/MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK pathways for cancer therapy has been pursued for over a decade with limited success. Emerging data have indicated that only discrete subsets of cancer patients have favourable responses to these inhibitors. This is due to genetic mutations that confer drug insensitivity and compensatory mechanisms. Therefore understanding of the feedback mechanisms that occur with respect to specific genetic mutations may aid identification of novel biomarkers that predict patient response. In the present paper, we show that feedback between the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways is cell-line-specific and highly dependent on the activating mutation of K-Ras or overexpression c-Met. We found that cell lines exhibited differential signalling and apoptotic responses to PD184352, a specific MEK inhibitor, and PI103, a second-generation class I PI3K inhibitor. We reveal that feedback from the PI3K/Akt/mTORC1 to the Ras/MEK/ERK pathway is present in cancer cells harbouring either K-Ras activating mutations or amplification of c-Met but not the wild-type counterparts. Moreover, we demonstrate that inhibition of protein phosphatase activity by OA (okadaic acid) restored PI103-mediated feedback in wild-type cells. Together, our results demonstrate a novel mechanism for feedback between the PI3K/Akt/mTORC1 and the Ras/MEK/ERK pathways that only occurs in K-Ras mutant and c-Met amplified cells but not the isogenic wild-type cells through a mechanism that may involve inhibition of a specific endogenous phosphatase(s) activity. We conclude that monitoring K-Ras and c-Met status are important biomarkers for determining the efficacy of PI103 and other PI3K/Akt inhibitors in cancer therapy.
Resumo:
The ubiquitin proteasome system (UPS) plays a central role in cellular protein homeostasis through the targeted destruction of damaged/misfolded proteins and regulatory proteins that control critical cellular functions. The UPS comprises a sequential series of enzymatic activities to covalently attach ubiquitin to proteins to target them for degradation through the proteasome. Aberrancies within this system have been associated with transformation and tumourigenesis and thus, the UPS represents an attractive target for the development of anti-cancer therapies. The use of the first-in-class proteasome inhibitor, bortezomib, in the treatment of Plasma Cell Myeloma and Mantle Cell Lymphoma has validated the UPS as a therapeutic target. Following on its success, efforts are focused on the development of second-generation proteasome inhibitors and small molecule inhibitors of other components of the UPS. This review will provide an overview of the UPS and discuss current and novel therapies targeting the UPS.
Resumo:
Objectives: Combination microbicide vaginal rings may be more effective than single microbicide rings at reducing/preventing sexual transmission of HIV. Here, we report the preclinical development and macaque pharmacokinetics of matrix-type silicone elastomer vaginal rings containing dapivirine and darunavir.
Methods: Macaque rings containing 25 mg dapivirine, 300 mg darunavir and 100 mg dapivirine, and 300 mg darunavir were manufactured and characterised by differential scanning calorimetry. In vitro release was assessed into isopropanol/water and simulated vaginal fluid. Macaque vaginal fluid and blood serum concentrations for both antiretrovirals were measured during 28-day ring use. Tissue levels were measured on day 28. Ex vivo challenge studies were performed on vaginal fluid samples and IC50 values calculated.
Results: Darunavir caused a concentration-dependent reduction in the dapivirine melting temperature in both solid drug mixes and in the combination ring. In vitro release from rings was dependent on drug loading, the number of drugs present, and the release medium. In macaques, serum concentrations of both microbicides were maintained between 101–102 pg/mL. Vaginal fluid levels ranged between 103–104 ng/g and 104–105 ng/g for dapivirine and darunavir, respectively. Tissue concentrations ranges for each drug were: vagina (1.8×103–3.8×103 ng/g) > cervix (9.4×101–3.9×102 ng/g) > uterus (0–108 ng/g) > rectum (0–40 ng/g). Measured IC50 values were > 2 ng/mL for both compounds.
Conclusions: Based on these results, and in light of recent clinical progress of the 25mg dapivirine ring, a combination vaginal ring containing dapivirine and darunavir is a viable second-generation HIV microbicide candidate.
Resumo:
Background: Combination microbicide vaginal rings, containing two or more antiretrovirals targeting different steps in the HIV replicative process, may be more effective than single microbicide products at preventing sexual transmission of HIV. Here, we report the preclinical development, including in vitro release and macaque pharmacokinetics, of matrix-type silicone elastomer rings containing dapivirine (DPV; an experimental non-nucleoside reverse transcriptase inhibitor) and darunavir (DRV; a marketed protease inhibitor). Methods: Macaque rings containing 25 mg DPV, 300 mg DRV and 100 mg DPV, and 300 mg DRV were manufactured and characterised by differential scanning calorimetry. In vitro release was assessed into isopropanol/water and simulated vaginal fluid. Macaque vaginal fluid and blood serum concentrations for both antiretrovirals were measured during 28-day ring use. Tissue levels were measured on day 28. Ex vivo challenge studies were performed on vaginal fluid samples and IC50 values calculated.
Results: DRV caused a concentration-dependent reduction in the DPV melting temperature in both solid drug mixes and in the combination ring. In vitro release from rings was dependent on drug loading, the number of drugs present, and the release medium. In macaques, serum concentrations of both
microbicides were maintained between 101-102 pg/mL. Vaginal fluid levels
ranged between 103-104 ng/g and 104-105 ng/g for DPV and DRV, respectively. Vaginal tissue concentrations decreased in rank order: vagina
(1.8×103-3.8×103 ng/g) > cervix (9.4×101-3.9×102 ng/g) > uterus (0-108 ng/g) > rectum (0-40 ng/g). Measured IC50 values (HIV-1 BaL) determined from macaque vaginal fluid samples were < 2 ng/mL for both compounds. Conclusions: Based on these results, and in light of the ongoing clinical progress of the 25mg DPV ring, a combination vaginal ring containing DPV and DRV is a viable second-generation HIV microbicide candidate.
Resumo:
Submerged reefs are important recorders of palaeo-environments and sea-level change, and provide a substrate for modern mesophotic (deep-water, light-dependent) coral communities. Mesophotic reefs are rarely, if ever, described from the fossil record and nothing is known of their long-term record on Great Barrier Reef (GBR). Sedimentological and palaeo-ecological analyses coupled with 67 14C AMS and U–Th radiometric dates from dredged coral, algae and bryozoan specimens, recovered from depths of 45 to 130 m, reveal two distinct generations of fossil mesophotic coral community development on the submerged shelf edge reefs of the GBR. They occurred from 13 to 10 ka and 8 ka to present. We identified eleven sedimentary facies representing both autochthonous (in situ) and allochthonous (detrital) genesis, and their palaeo-environmental settings have been interpreted based on their sedimentological characteristics, biological assemblages, and the distribution of similar modern biota within the dredges. Facies on the shelf edge represent deep sedimentary environments, primarily forereef slope and open platform settings in palaeo-water depths of 45–95 m. Two coral–algal assemblages and one non-coral encruster assemblage were identified: 1) Massive and tabular corals including Porites, Montipora and faviids associated with Lithophylloids and minor Mastophoroids, 2) platy and encrusting corals including Porites, Montipora and Pachyseris associated with melobesioids and Sporolithon, and 3) Melobesiods and Sporolithon with acervulinids (foraminifera) and bryozoans. Based on their modern occurrence on the GBR and Coral Sea and modern specimens collected in dredges, these are interpreted as representing palaeo-water depths of < 60 m, < 80–100 m and > 100 m respectively. The first mesophotic generation developed at modern depths of 85–130 m from 13 to 10.2 ka and exhibit a deepening succession of < 60 to > 100 m palaeo-water depth through time. The second generation developed at depths of 45–70 m on the shelf edge from 7.8 ka to present and exhibit stable environmental conditions through time. The apparent hiatus that interrupted the mesophotic coral communities coincided with the timing of modern reef initiation on the GBR as well as a wide-spread flux of siliciclastic sediments from the shelf to the basin. For the first time we have observed the response of mesophotic reef communities to millennial scale environmental perturbations, within the context of global sea-level rise and environmental changes.
Resumo:
Recently, the use of plasma optics to improve temporal pulse contrast has had a remarkable impact on the field of high- power laser-solid density interaction physics. Opening an avenue to previously unachievable plasma density gradients in the high intensity focus, this advance has enabled researchers to investigate new regimes of harmonic generation and ion acceleration. Until now, however, plasma optics for fundamental laser reflection have been used in the sub-relativistic intensity regime (10(15) - 10(16)Wcm(-2)) showing high reflectivity (similar to 70%) and good focusability. Therefore, the question remains as to whether plasma optics can be used for such applications in the relativistic intensity regime (> 10(18)Wcm(-2)). Previous studies of plasma mirrors (PMs) indicate that, for 40 fs laser pulses, the reflectivity fluctuates by an order of magnitude and that focusability of the beam is lost as the intensity is increased above 5 x 10(16)Wcm(-2). However, these experiments were performed using laser pulses with a contrast ratio of similar to 10(7) to generate the reflecting surface. Here, we present results for PM operation using high contrast laser pulses resulting in a new regime of operation - the high contrast plasma mirror (HCPM). In this regime, pulses with contrast ratio > 10(10) are used to form the PM surface at > 10(19)Wcm(-2), displaying excellent spatial filtering, reflected near- field beam profile of the fundamental beam and reflectivities of 60 +/- 5%. Efficient second harmonic generation is also observed with exceptional beam quality suggesting that this may be a route to achieving the highest focusable harmonic intensities. Plasma optics therefore offer the opportunity to manipulate ultra-intense laser beams both spatially and temporally. They also allow for ultrafast frequency up-shifting without detrimental effects due to group velocity dispersion (GVD) or reduced focusability which frequently occur when nonlinear crystals are used for frequency conversion.
Resumo:
The effect of simulated hyperglycaemia on bovine retinal pericytes was studied following culture of these cells for 10 days under normal (5 mmol/l) and elevated (25 mmol/l) glucose conditions in the absence of endothelial cells. Pericytes cultured under high ambient glucose exhibited both a delayed and reduced contractile response following stimulation with endothelin-1. Stimulation with 10(-7) mol/l endothelin-1 for 30 s caused significant contraction in cells grown in both 5 mmol/l and 25 mmol/l glucose. The former also contracted significantly with 10(-8) mol/l endothelin-1. Further, at all concentrations tested, statistical comparison of the time course of contraction showed a significant difference (p 0.1) between bovine retinal pericytes grown for 10 days under normo- or hyperglycaemic conditions, it became apparent that the altered contractility in bovine retinal pericytes following culture in high glucose must be due to post-binding intracellular disturbance(s). Indeed, both basal and 15 s post-stimulation with 10(-8) mol/l endothelin-1, levels of inositol trisphosphate were significantly reduced (p
Resumo:
Nonlinear optics is an essential component of modern laser systems and optoelectronic devices. It has also emerged as an important tool in probing the electronic, vibrational, magnetic, and crystallographic structure of materials ranging from oxides and metals, to polymers and biological samples. This review focuses on the specific technique of optical second harmonic generation (SHG), and its application in probing ferroelectric complex oxide crystals and thin films. As the dominant SHG interaction mechanism exists only in materials that lack inversion symmetry, SHG is a sensitive probe of broken inversion symmetry, and thus also of bulk polar phenomena in materials. By performing in-situ SHG polarimetry experiments in different experimental conditions such as sample orientation, applied electric field, and temperature, one can probe ferroelectric hysteresis loops and phase transitions. Careful modeling of the polarimetry data allows for the determination of the point group symmetry of the crystal. In epitaxial thin films with a two-dimensional arrangement of well-defined domain orientations, one can extract information about intrinsic material properties such as nonlinear coefficients, as well as microstructural information such as the local statistics of the different domain variants being probed. This review presents several detailed examples of ferroelectric systems where such measurements and modeling are performed. The use of SHG microscopic imaging is discussed, and its ability to reveal domain structures and phases not normally visible with linear optics is illustrated.
Resumo:
We present an ab initio real-time-based computational approach to study nonlinear optical properties in condensed matter systems that is especially suitable for crystalline solids and periodic nanostructures. The equations of motion and the coupling of the electrons with the external electric field are derived from the Berry-phase formulation of the dynamical polarization [Souza et al., Phys. Rev. B 69, 085106 (2004)]. Many-body effects are introduced by adding single-particle operators to the independent-particle Hamiltonian. We add a Hartree operator to account for crystal local effects and a scissor operator to correct the independent particle band structure for quasiparticle effects. We also discuss the possibility of accurately treating excitonic effects by adding a screened Hartree-Fock self-energy operator. The approach is validated by calculating the second-harmonic generation of SiC and AlAs bulk semiconductors: an excellent agreement is obtained with existing ab initio calculations from response theory in frequency domain [Luppi et al., Phys. Rev. B 82, 235201 (2010)]. We finally show applications to the second-harmonic generation of CdTe and the third-harmonic generation of Si.
Resumo:
We study second-harmonic generation in h-BN and MoS$_2$ monolayers using a novel \emph{ab initio} approach based on Many-body theory. We show that electron-hole interaction doubles the signal intensity at the excitonic resonances with respect to the contribution from independent electronic transitions. This implies that electron-hole interaction is essential to describe second-harmonic generation in those materials. We argue that this finding is general for nonlinear optical properties in nanostructures and that the present methodology is the key to disclose these effects.
Resumo:
The efficient resonant nonlinear coupling between localized surface plasmon modes is demonstrated in a simple and intuitive way using boundary integral formulation and utilizing second-order optical nonlinearity. The nonlinearity is derived from the hydrodynamic description of electron plasma and originates from the presence of material interfaces in the case of small metal particles. The coupling between fundamental and second-harmonic modes is shown to be symmetry selective and proportional to the spatial overlap between polarization dipole density of the second-harmonic mode and the square of the polarization charge density of the fundamental mode. Particles with high geometrical symmetry will convert a far-field illumination into dark nonradiating second-harmonic modes, such as quadrupoles. Effective second-harmonic susceptibilities are proportional to the surface-to-volume ratio of a particle, emphasizing the nanoscale enhancement of the effect.