190 resultados para return loss
Resumo:
During the 1992-95 war, Prijedor was synonymous with mass killing, ethnic cleansing and detention camps. A decade after the end of the war, international agencies consider this town to be an example of successful foreign intervention. Thousands of Muslim displaced persons (DPs) returned to their pre-war homes, mosques have been rebuilt, and hard-line Serb nationalists have lost much influence. How could Prijedor turn from a hopeless case of ethnic violence to an example of successful intervention? This essay argues that Prijedor's (relative) success is due more to the determination of Muslim DPs than to the international peacebuilding strategy. The initial post-Dayton international intervention exacerbated the problem of internal displacement, raised ethnic tensions and left Prijedor in the hands of the same indicted war criminals responsible for the war. Against the advice of international agencies, which feared a backlash among the Bosnian Serbs, in 1998 Muslim DPs began returning home. Eventually, large-scale return improved ethnic relations and helped marginalize Bosnian Serb extremists. The essay concludes by highlighting the lessons from Prijedor, and identifies the domestic and international contribution to Prijedor's post-settlement success.
Resumo:
Langerin is a C-type lectin expressed by a subset of dendritic leukocytes, the Langerhans cells (LC). Langerin is a cell surface receptor that induces the formation of an LC-specific organelle, the Birbeck granule (BG). We generated a langerin(-/-) mouse on a C57BL/6 background which did not display any macroscopic aberrant development. In the absence of langerin, LC were detected in normal numbers in the epidermis but the cells lacked BG. LC of langerin(-/-) mice did not present other phenotypic alterations compared to wild-type littermates. Functionally, the langerin(-/-) LC were able to capture antigen, to migrate towards skin draining lymph nodes, and to undergo phenotypic maturation. In addition, langerin(-/-) mice were not impaired in their capacity to process native OVA protein for I-A(b)-restricted presentation to CD4(+) T lymphocytes or for H-2K(b)-restricted cross-presentation to CD8(+) T lymphocytes. langerin(-/-) mice inoculated with mannosylated or skin-tropic microorganisms did not display an altered pathogen susceptibility. Finally, chemical mutagenesis resulted in a similar rate of skin tumor development in langerin(-/-) and wild-type mice. Overall, our data indicate that langerin and BG are dispensable for a number of LC functions. The langerin(-/-) C57BL/6 mouse should be a valuable model for further functional exploration of langerin and the role of BG.
Resumo:
Arguments are given that lead to a formalism for calculating near K-edge structure in electron energy loss spectroscopy (EELS). This is essentially a one electron picture, while many body effects may be introduced at different levels, such as the local density approximation to density functional theory or the GW approximation to the electron self-energy. Calculations are made within the all electron LMTO scheme in crystals with complex atomic and electronic structures, and these are compared with experiment. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The electron energy-loss near-edge structure (ELNES) at the O K edge has been studied in yttria-stabilized zirconia (YSZ). The electronic structure of YSZ for compositions between 3 and 15 mol % Y2O3 has been computed using a pseudopotential-based technique to calculate the local relaxations near the O vacancies. The results showed phase transition from the tetragonal to cubic YSZ at 10 mol % of Y2O3, reproducing experimental observations. Using the relaxed defect geometry, calculation of the ELNES was carried out using the full-potential linear muffin-tin orbital method. The results show very good agreement with the experimental O K-edge signal, demonstrating the power of using ELNES to probe the stabilization mechanism in doped metal oxides.
Resumo:
The electron energy-loss near-edge structure (ELNES) at the oxygen K-edge has been investigated in a range of yttria-stabilized zirconia (YSZ) materials. The electronic structure of the three polymorphs of pure ZrO2 and of the doped YSZ structure close to the 33 mol %Y2O3 composition have been calculated using a full-potential linear muffin-tin orbital method (NFP-LMTO) as well as a pseudopotential based technique. Calculations of the ELNES dipole transition matrix elements in the framework of the NFP-LMTO scheme and inclusion of core hole screening within Slater's transition state theory enable the ELNES to be computed. Good agreement between the experimental and calculated ELNES is obtained for pure monoclinic ZrO2. The agreement is less good with the ideal tetragonal and cubic structures. This is because the inclusion of defects is essential in the calculation of the YSZ ELNES. If the model used contains ordered defects such as vacancies and metal Y planes, agreement between the calculated and experimental O K-edges is significantly improved. The calculations show how the five different O environments of Zr,Y,O, are connected with the features observed in the experimental spectra and demonstrate clearly the power of using ELNES to probe the stabilization mechanism in doped metal oxides.
Resumo:
We investigate the ability of the local density approximation (LDA) in density functional theory to predict the near-edge structure in electron energy-loss spectroscopy in the dipole approximation. We include screening of the core hole within the LDA using Slater's transition state theory. We find that anion K-edge threshold energies are systematically overestimated by 4.22 +/- 0.44 eV in twelve transition metal carbides and nitrides in the rock-salt (B1) structure. When we apply this 'universal' many-electron correction to energy-loss spectra calculated within the transition state approximation to LDA, we find quantitative agreement with experiment to within one or two eV for TiC, TiN and VN. We compare our calculations to a simpler approach using a projected Mulliken density which honours the dipole selection rule, in place of the dipole matrix element itself. We find remarkably close agreement between these two approaches. Finally, we show an anomaly in the near-edge structure in CrN to be due to magnetic structure. In particular, we find that the N K edge in fact probes the magnetic moments and alignments of ther sublattice.
Resumo:
We have studied the optical spectra of a sample of 31 O- and early B-type stars in the Small Magellanic Cloud, 21 of which are associated with the young massive cluster NGC 346. Stellar parameters are determined using an automated fitting method (Mokiem et al. 2005, A&A, 441, 711), which combines the stellar atmosphere code FASTWIND (Puls et al. 2005, A&A, 435, 669) with the genetic algorithm based optimisation routine PIKAIA (Charbonneau 1995, ApJS, 101, 309). Comparison with predictions of stellar evolution that account for stellar rotation does not result in a unique age, though most stars are best represented by an age of 1-3 Myr. The automated method allows for a detailed determination of the projected rotational velocities. The present day v(r) sin i distribution of the 21 dwarf stars in our sample is consistent with an underlying rotational velocity (v(r)) distribution that can be characterised by a mean velocity of about 160-190 km s(-1) and an effective half width of 100-150 km s(-1). The vr distribution must include a small percentage of slowly rotating stars. If predictions of the time evolution of the equatorial velocity for massive stars within the environment of the SMC are correct (Maeder & Meynet 2001, A&A, 373, 555), the young age of the cluster implies that this underlying distribution is representative for the initial rotational velocity distribution. The location in the Hertzsprung-Russell diagram of the stars showing helium enrichment is in qualitative agreement with evolutionary tracks accounting for rotation, but not for those ignoring vr. The mass loss rates of the SMC objects having luminosities of log L-star/L-circle dot greater than or similar to 5.4 are in excellent agreement with predictions by Vink et al. (2001, A&A, 369, 574). However, for lower luminosity stars the winds are too weak to determine. M accurately from the optical spectrum. Three targets were classified as Vz stars, two of which are located close to the theoretical zero-age main sequence. Three lower luminosity targets that were not classified as Vz stars are also found to lie near the ZAMS. We argue that this is related to a temperature effect inhibiting cooler from displaying the spectral features required for the Vz luminosity class.
Atomic oxygen surface loss coefficient measurements in a capacitive/inductive radio-frequency plasma
Resumo:
Spatially resolved measurements of the atomic oxygen densities close to a sample surface in a dual mode (capacitive/inductive) rf plasma are used to measure the atomic oxygen surface loss coefficient beta on stainless steel and aluminum substrates, silicon and silicon dioxide wafers, and on polypropylene samples. beta is found to be particularly sensitive to the gas pressure for both operating modes. It is concluded that this is due to the effect of changing atom and ion flux to the surface. (C) 2002 American Institute of Physics.