73 resultados para residual gas analysis
Resumo:
This paper describes a model of a 1.8-litre four-cylinder four-stroke gasoline engine fitted with a close-coupled three-way catalyst (TWC). Designed to meet EURO 3 emissions standards, the engine includes some advanced emission control features in addition to the TWC, namely: variable valve timing (VVT), swirl control plates, and exhaust gas recirculation (EGR). Gas flow is treated as one-dimensional (1D) and unsteady in the engine ducting and in the catalyst. Reflection and transmission of pressure waves at the boundaries of the catalyst monolith are modelled. In-cylinder combustion is represented by a two-zone burn model with dissociation and reaction kinetics. A single Wiebe analysis of measured in-cylinder pressure data is used to determine the mass fraction burned as a function of crank angle (CA) at each engine speed. Measured data from steady-state dynamometer tests are presented for operation at wide open throttle (WOT) over a range of engine speeds. These results include CA-resolved traces of pressure at various locations throughout the engine together with cycle-averaged traces of gas composition entering the catalyst as indicated by a fast-response emissions analyser. Simulated engine performance and pressure wave action throughout the engine are well validated by the measured data.
Resumo:
Traditionally the simulation of the thermodynamic aspects of the internal combustion engine has been undertaken using one-dimensional gas-dynamic models to represent the intake and exhaust systems. CFD analysis of engines has been restricted to modelling of in-cylinder flow structures. With the increasing accessibility of CFD software it is now worth considering its use for complete gas-dynamic engine simulation. This paper appraises the accuracy of various CFD models in comparison to a 1D gas-dynamic simulation. All of the models are compared to experimental data acquired on an apparatus that generates a single gas-dynamic pressure wave. The progress of the wave along a constant area pipe and its subsequent reflection from the open pipe end are recorded with a number of high speed pressure transducers. It was found that there was little to choose between the accuracy of the 1D model and the best CFD model. The CFD model did not require experimentally derived loss coefficients to accurately represent the open pipe end; however, it took several hundred times longer to complete its analysis. The best congruency between the CFD models and the experimental data was achieved using the RNG k-e turbulence model. The open end of the pipe was most effectively represented by surrounding it with a relatively small volume of cells connected to the rest of the environment using a pressure boundary.
Resumo:
The incorporation of one-dimensional simulation codes within engine modelling applications has proved to be a useful tool in evaluating unsteady gas flow through elements in the exhaust system. This paper reports on an experimental and theoretical investigation into the behaviour of unsteady gas flow through catalyst substrate elements. A one-dimensional (1-D) catalyst model has been incorporated into a 1-D simulation code to predict this behaviour.
Experimental data was acquired using a ‘single pulse’ test rig. Substrate samples were tested under ambient conditions in order to investigate a range of regimes experienced by the catalyst during operation. This allowed reflection and transmission characteristics to be quantified in relation to both geometric and physical properties of substrate elements. Correlation between measured and predicted results is demonstrably good and the model provides an effective analysis tool for evaluating unsteady gas flow through different catalytic converter designs.
Resumo:
A sequential biological permeable reactive barrier (PRB) was determined to be the best option for remediating groundwater that has become contaminated with a wide range of organic contaminants (i.e., benzene, toluene, ethylbenzene, xylene and polyaromatic hydrocarbons), heavy metals (i.e., lead and arsenic), and cyanide at a former manufactured gas plant after 150 years of operation in Portadown, Northern Ireland. The objective of this study was to develop a modified flyash that could be used in the initial cell within a sequential biological PRB to filter complex contaminated groundwater containing ammonium. Flyash modified with lime (CaOH) and alum was subjected to a series of batch tests which investigated the modified cation exchange capacity (CEC) and rate of removal of anions and cations from the solution. These tests showed that a high flyash composition medium (80%) could remove 8.65 mol of ammonium contaminant for every kilogram of medium. The modified CEC procedure ruled out the possibility of cation exchange as the major removal mechanism. The medium could also adsorb anions as well as cations (i.e., Pb and Cr), but not with the same capacity. The initial mechanism for Pb and Cr removal is probably precipitation. This is followed by sorption, which is possibly the only mechanism for the removal of dichromate anions. Scanning electron microscopic analysis revealed very small (
Resumo:
Aims: To investigate the distribution of a polymicrobial community of biodegradative bacteria in (i) soil and groundwater at a former manufactured gas plant (FMGP) site and (ii) in a novel SEquential REactive BARrier (SEREBAR) bioremediation process designed to bioremediate the contaminated groundwater. Methods and Results: Culture-dependent and culture-independent analyses using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR) for the detection of 16S ribosomal RNA gene and naphthalene dioxygenase (NDO) genes of free-living (planktonic groundwater) and attached (soil biofilm) samples from across the site and from the SEREBAR process was applied. Naphthalene arising from groundwater was effectively degraded early in the process and the microbiological analysis indicated a dominant role for Pseudomonas and Comamonas in its degradation. The microbial communities appeared highly complex and diverse across both the sites and in the SEREBAR process. An increased population of naphthalene degraders was associated with naphthalene removal. Conclusion: The distribution of micro-organisms in general and naphthalene degraders across the site was highly heterogeneous. Comparisons made between areas contaminated with polycyclic aromatic hydrocarbons (PAH) and those not contaminated, revealed differences in the microbial community profile. The likelihood of noncultured bacteria being dominant in mediating naphthalene removal was evident. Significance and Impact of the Study: This work further emphasizes the importance of both traditional and molecular-based tools in determining the microbial ecology of contaminated sites and highlights the role of noncultured bacteria in the process.
Resumo:
We present a model-atmosphere analysis for the bright (V similar to 13) star ZNG-1, in the globular cluster M10. From high-resolution (R similar to 40 000) optical spectra we confirm ZNG-1 to be a post-asymptotic giant branch (post-AGB) star. The derived atmospheric parameters are T-eff = 26 500 +/- 1000 K and log g = 3.6 +/- 0.2 dex. A differential abundance analysis reveals a chemical composition typical of hot post-AGB objects, with ZNG-1 being generally metal poor, although helium is approximately solar. The most interesting feature is the large carbon underabundance of more than 1.3 dex. This carbon deficiency, along with an observed nitrogen enhancement relative to other elements, may suggest that ZNG-1 evolved off the AGB before the third dredge-up occurred. Also, iron depletions observed in other similar stars suggest that gas- dust fractionation in the AGB progenitor could be responsible for the observed composition of these objects. However, we need not invoke either scenario since the chemical composition of ZNG-1 is in good agreement with abundances found for a Population II star of the same metallicity.
Resumo:
An analysis of high-resolution Anglo-Australian Telescope (AAT)/University College London Echelle Spectrograph (UCLES) optical spectra for the ultraviolet (UV)-bright star ROA 5701 in the globular cluster omega Cen (NGC 5139) is performed, using non-local thermodynamic equilibrium (non-LTE) model atmospheres to estimate stellar atmospheric parameters and chemical composition. Abundances are derived for C, N, O, Mg, Si and S, and compared with those found previously by Moehler et al. We find a general metal underabundance relative to young B-type stars, consistent with the average metallicity of the cluster. Our results indicate that ROA 5701 has not undergone a gas-dust separation scenario as previously suggested. However, its abundance pattern does imply that ROA 5701 has evolved off the asymptotic giant branch (AGB) prior to the onset of the third dredge-up.
Resumo:
The results of a study to characterise the polarisation properties of the photon beam emerging from beamline 5D, mounted on a bending magnet source at the Synchrotron Radiation Source, Daresbury Laboratory, are presented. The expectation values for the Stokes parameters corresponding to the light transmitted by the beamline have been calculated by combining ray-tracing and optical methods. The polarisation of the light at the source is modified both by the beamline geometry and by the reflections at the optical components. Although it is often assumed that the polarising properties of grazing incidence optics are negligible, this assumption leads to rather inaccurate results in the VUV region. A study of the reflectivity shows that even at incidence angles (theta(i) = 80-85degrees) which are far from the Brewster angle (theta(B) similar to 45degrees for VUV and soft X-ray radiation) the residual changes in the amplitudes of the reflected light can result in non-negligible polarisation effects. Furthermore, reflection at grazing incidence gives rise to a substantial change in the phase, and this has the effect of rotating the elliptically polarised state. Theoretical Stokes parameters have been compared with full polarisation measurements obtained using a reflection polarimeter in the energy range 20-40 eV. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The reactivity of the species formed at the surface of a Au/Ce(La)O2 catalyst during the water������¢���¯���¿���½���¯���¿���½gas shift (WGS) reaction were investigated by operando diffuse reflectance Fourier transform spectroscopy (DRIFTS) at the chemical steady state during isotopic transient kinetic analyses (SSITKA). The exchanges of the reaction product CO2 and of formate and carbonate surface species were followed during an isotopic exchange of the reactant CO using a DRIFTS cell as a single reactor. The DRIFTS cell was a modified commercial cell that yielded identical reaction rates to that measured over a quartz plug-flow reactor. The DRIFTS signal was used to quantify the relative oncentrations of the surface species and CO2. The analysis of the formate exchange curves between 428 and 493 K showed that at least two levels of reactivity were present. ������¢���¯���¿���½���¯���¿���½Slow formates������¢���¯���¿���½���¯���¿���½ displayed an exchange rate constant 10- to 20-fold slower than that of the reaction product CO2. ������¢���¯���¿���½���¯���¿���½Fast formates������¢���¯���¿���½���¯���¿���½ were exchanged on a time scale similar to that of CO2. Multiple nonreactive readsorption of CO2 took place, accounting for the kinetics of the exchange of CO2(g) and making it impossible to determine the number of active sites through the SSITKA technique. The concentration (in mol g������¢���¯���¿���½���¯���¿���½1) of formates on the catalyst was determined through a calibration curve and allowed calculation of the specific rate of formate decomposition. The rate of CO2 formation was more than an order of magnitude higher than the rate of decomposition of formates (slow + fast species), indicating that all of the formates detected by DRIFTS could not be the main reaction intermediates in the production of CO2. This work stresses the importance of full quantitative analyses (measuring both rate constants and adsorbate concentrations) when investigating the role of adsorbates as potential reaction intermediates, and illustrates how even reactive species seen by DRIFTS may be unimportant in the overall reaction scheme.
Resumo:
Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (similar or equal to 25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.
Resumo:
We report the discovery of WASP-3b, the third transiting exoplanet to be discovered by the WASP and SOPHIE collaboration. WASP-3b transits its host star USNO-B1.01256-0285133 every 1.846834 +/- 0.000002 d. Our high-precision radial velocity measurements present a variation with amplitude characteristic of a planetary-mass companion and in phase with the light curve. Adaptive optics imaging shows no evidence for nearby stellar companions, and line-bisector analysis excludes faint, unresolved binarity and stellar activity as the cause of the radial velocity variations. We make a preliminary spectroscopic analysis of the host star and find it to have Teff = 6400 +/- 100K and log g = 4.25 +/- 0.05 which suggests it is most likely an unevolved main-sequence star of spectral type F7-8V. Our simultaneous modelling of the transit photometry and reflex motion of the host leads us to derive a mass of 1.76+0.08-0.14 MJ and radius 1.31+0.07-0.14 RJ for WASP-3b. The proximity and relative temperature of the host star suggests that WASP-3b is one of the hottest exoplanets known, and thus has the potential to place stringent constraints on exoplanet atmospheric models.
Resumo:
The present work emphasizes the importance of including a full quantitative analysis when in situ operando methods are used to investigate reaction mechanisms and reaction intermediates. The fact that some surface species exchange at a similar rate to the reaction product during isotopic transients is a necessary but not sufficient criterion for participation as a key reaction intermediate. This is exemplified here in the case of highly active low-temperature water-gas shift (WGS) catalysts based on gold and platinum. Operando DRIFTS data, isotopic exchanges, and DRIFTS calibration curves relating the concentration of formate species to the corresponding DRIFTS band intensity were combined to obtain a quantitative measure of the specific rate of formate decomposition. Despite displaying a rapid isotopic exchange rate (sometimes as fast as that of the reaction product CO2), the concentration of formates seen by DRIFTS was found to account for at most only 10% of the CO2 produced under the experimental conditions reported herein. These new results obtained on Au/CeZrO4 and Pt/CeO2 preparations (which are among the most active low-temperature WGS catalysts reported to date), led to the same conclusions regarding the minor role of IR-observable formates as those obtained in the case of less active Au/Ce(La)O-2 and Pt/ZrO2 catalysts. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
First, the direct and indirect electrochemical oxidation of ammonia has been studied by cyclic voltammetry at glassy carbon electrodes in propylene carbonate. In the case of the indirect oxidation of ammonia, its analytical utility of indirect for ammonia sensing was examined in the range from 10 and 100 ppm by measuring the peak current of new wave resulting from reaction between ammonia and hydroquinone, as function of ammonia concentration, giving a sensitivity 1.29 x 10(-7) A ppm(-1) (r(2)=0.999) and limit-of-detection 5 ppm ammonia. Further, the direct oxidation of ammonia has been investigated in several room temperature ionic liquids (RTILs), namely 1-butyl-3-methylimidazolium tetrafluoroborate ([C(4)mim] [BF4]), 1-butyl-3-methylimiclazolium trifluoromethylsulfonate ([C4mim] [OTf]), 1-Ethyl -3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(2)mim] [NTf2]), 1-butyl-3-methylimidazolium bis(tritluoromethylsulfonyl)imide ([C4mim] [NTf2]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim] [PF6]) on a 10 put diameter Pt microdisk electrode. In four of the RTILs studied, the cyclic voltammetric analysis suggests that ammonia is initially oxidized to nitrogen, N-2, and protons, which are transferred to an ammonia molecule, forming NH4+ via the protonation of the anion(s) (A(-)). However, in [C4mim] [PF6], the protonated anion was formed first, followed by NH4+. In all five RTILs, both HA and NH4+ are reduced at the electrode surface, forming hydrogen gas, which is then oxidized. The analytical ability of this work has also been explored further, giving a limit-of-detection close to 50 ppm in [C(2)mim] [NTf2], [C(4)mim] [OTf], [C(4)mim] [BF4], with a sensitivity of ca. 6 x 10(-7) A ppm(-1) (r(2) = 0.999) for all three ionic liquids, showing that the limit of detection was ca. ten times larger than that in propylene carbonate since ammonia in propylene carbonate might be more soluble in comparison with RTILs when considering the higher viscosity of RTILs.
Resumo:
The present report investigates the role of formate species as potential reaction intermediates for the WGS reaction (CO + H2O -> CO2 + H-2) over a Pt-CeO2 catalyst. A combination of operando techniques, i.e., in situ diffuse reflectance FT-IR (DRIFT) spectroscopy and mass spectrometry (MS) during steady-state isotopic transient kinetic analysis (SSITKA), was used to relate the exchange of the reaction product CO2 to that of surface formate species. The data presented here suggest that a switchover from a non-formate to a formate-based mechanism could take place over a very narrow temperature range (as low as 60 K) over our Pt-CeO2 catalyst. This observation clearly stresses the need to avoid extrapolating conclusions to the case of results obtained under even slightly different experimental conditions. The occurrence of a low-temperature mechanism, possibly redox or Mars van Krevelen-like, that deactivates above 473 K because of ceria over-reduction is suggested as a possible explanation for the switchover, similarly to the case of the CO-NO reaction over Cu, I'd and Rh-CeZrOx (see Kaspar and co-workers [1-3]). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte Carlo analysis was used to determine the planet star radius ratio and inclination of the system, which were found to be R-p/R-star = 0.1664(-0.0018)(+0.0011) and i = 81.73(-0.04)(+0.13), respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving chi(2) = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a constant period either have relatively little out-of-transit coverage or have clear systematics. A new ephemeris was calculated using the transit times and was found to be T-c(0) = 2454632.62610 +/- 0.00006 HJD and P = 1.3061864 +/- 0.0000005 days. The transit times were then used to place upper mass limits as a function of the period ratio of a potential perturbing planet, showing that our data are sufficiently sensitive to have probed sub-Earth mass planets in both interior and exterior 2:1 resonances, assuming that the additional planet is in an initially circular orbit.