85 resultados para reliability test system


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dependency on thermal generation and continued wind power growth in Europe due to renewable energy and greenhouse gas emissions targets has resulted in an interesting set of challenges for power systems. The variability of wind power impacts dispatch and balancing by grid operators, power plant operations by generating companies and market wholesale costs. This paper quantifies the effects of high wind power penetration on power systems with a dependency on gas generation using a realistic unit commitment and economic dispatch model. The test system is analyzed under two scenarios, with and without wind, over one year. The key finding of this preliminary study is that despite increased ramping requirements in the wind scenario, the unit cost of electricity due to sub-optimal operation of gas generators does not show substantial deviation from the no wind scenario.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need for fast response demand side participation (DSP) has never been greater due to increased wind power penetration. White domestic goods suppliers are currently developing a `smart' chip for a range of domestic appliances (e.g. refrigeration units, tumble dryers and storage heaters) to support the home as a DSP unit in future power systems. This paper presents an aggregated population-based model of a single compressor fridge-freezer. Two scenarios (i.e. energy efficiency class and size) for valley filling and peak shaving are examined to quantify and value DSP savings in 2020. The analysis shows potential peak reductions of 40 MW to 55 MW are achievable in the Single wholesale Electricity Market of Ireland (i.e. the test system), and valley demand increases of up to 30 MW. The study also shows the importance of the control strategy start time and the staggering of the devices to obtain the desired filling or shaving effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this brief, a hybrid filter algorithm is developed to deal with the state estimation (SE) problem for power systems by taking into account the impact from the phasor measurement units (PMUs). Our aim is to include PMU measurements when designing the dynamic state estimators for power systems with traditional measurements. Also, as data dropouts inevitably occur in the transmission channels of traditional measurements from the meters to the control center, the missing measurement phenomenon is also tackled in the state estimator design. In the framework of extended Kalman filter (EKF) algorithm, the PMU measurements are treated as inequality constraints on the states with the aid of the statistical criterion, and then the addressed SE problem becomes a constrained optimization one based on the probability-maximization method. The resulting constrained optimization problem is then solved using the particle swarm optimization algorithm together with the penalty function approach. The proposed algorithm is applied to estimate the states of the power systems with both traditional and PMU measurements in the presence of probabilistic data missing phenomenon. Extensive simulations are carried out on the IEEE 14-bus test system and it is shown that the proposed algorithm gives much improved estimation performances over the traditional EKF method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a hybrid method for dielectric-metal composites that describes the dynamics of the metallic system classically whilst retaining a quantum description of the dielectric. The time-dependent dipole moment of the classical system is mimicked by the introduction of projected equations of motion (PEOM) and the coupling between the two systems is achieved through an effective dipole-dipole interaction. To benchmark this method, we model a test system (semiconducting quantum dot-metal nanoparticle hybrid). We begin by examining the energy absorption rate, showing agreement between the PEOM method and the analytical rotating wave approximation (RWA) solution. We then investigate population inversion and show that the PEOM method provides an accurate model for the interaction under ultrashort pulse excitation where the traditional RWA breaks down.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The LifeShirt is a novel ambulatory monitoring system that records cardio respiratory measurements outside the laboratory. Validity and reliability of cardiorespiratory measurements recorded by the LifeShirt were assessed and two methods of calibrating the LifeShirt were compared. Participants performed an incremental treadmill test and a constant work rate test (65% peak oxygen uptake) on four occasions (>48 In apart) and wore the LifeShirt, COSMED system and Polar Sport Tester simultaneously. The LifeShirt was calibrated using two methods: comparison to a spirometer; and 800 ml fixed-volume bag. Ventilation, respiratory rate, expiratory time and heart rate recorded by the LifeShirt were compared to measurements recorded by laboratory equipment. Sixteen adults participated (6M: 10F); mean (SD) age 23.1 (2.9) years. Agreement between the LifeShirt and laboratory equipment was acceptable. Agreement for ventilation was improved by calibrating the LifeShirt using a spirometer. Reliability was similar for the LifeShirt and the laboratory equipment. This study suggests that the LifeShirt provides a valid and reliable method of ambulatory monitoring. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The concurrent validity of a 1 minute walk test at a child's maximum walking speed was assessed in children with bilateral spastic cerebral palsy (BSCP). The distance covered during the 1 minute walk test was compared with the children's gross motor function as assessed by the Gross Motor Function Measure (GMFM). Twenty-four male and 10 female children with CP (mean age 11y, range 4 to 16y) participated in the study. Gross Motor Function Classification System (GMFCS) levels were; level I (n=3), level II (n=17), level III (n=10), and level IV (n=4). Participants had clinical diagnoses of symmetrical diplegia (n=19), asymmetrical diplegia (n=14), and quadriplegia (n=1). Results showed a significant correlation between GMFM score and the distance covered during the 1 minute walk (r=0.92; p<0.001). There was also a significant decrease in the distance walked with increasing GMFCS level (p<0.001). We concluded that the 1 minute walk test is a valid measure for assessing functional ability in children with ambulatory BSCP. Its cost-effectiveness and user friendliness make it a potentially useful tool in the clinical setting. Further study needs to address its reliability and ability to detect change over time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the reliability and thus the suitability of optical fibre strain sensors for surface strain measurement in concrete structures was investigated. Two different configurations of optical strain sensors were used each having different mountings making them suitable for different uses in various structures. Due to the very limited time available to install the sensors and take result, commercially packaged sensors were used. In the tests carried out each sensor was mounted onto a concrete beam which was then subjected to a range of known and calibrated loadings. The performance of the optical strain sensors thus evaluated was compared with the results of conventional techniques. This comparison allows for selecting the best performing combination of sensor/mounting, i.e. long-gauge sensor with mounts bolted to threaded rods glued into the concrete for use in future work in a field test where a limited time window was available for installation, testing and post-test demounting. © 2012 Elsevier B.V.