18 resultados para recent positive selection
Resumo:
Background: Selection bias in HIV prevalence estimates occurs if non-participation in testing is correlated with HIV status. Longitudinal data suggests that individuals who know or suspect they are HIV positive are less likely to participate in testing in HIV surveys, in which case methods to correct for missing data which are based on imputation and observed characteristics will produce biased results. Methods: The identity of the HIV survey interviewer is typically associated with HIV testing participation, but is unlikely to be correlated with HIV status. Interviewer identity can thus be used as a selection variable allowing estimation of Heckman-type selection models. These models produce asymptotically unbiased HIV prevalence estimates, even when non-participation is correlated with unobserved characteristics, such as knowledge of HIV status. We introduce a new random effects method to these selection models which overcomes non-convergence caused by collinearity, small sample bias, and incorrect inference in existing approaches. Our method is easy to implement in standard statistical software, and allows the construction of bootstrapped standard errors which adjust for the fact that the relationship between testing and HIV status is uncertain and needs to be estimated. Results: Using nationally representative data from the Demographic and Health Surveys, we illustrate our approach with new point estimates and confidence intervals (CI) for HIV prevalence among men in Ghana (2003) and Zambia (2007). In Ghana, we find little evidence of selection bias as our selection model gives an HIV prevalence estimate of 1.4% (95% CI 1.2% – 1.6%), compared to 1.6% among those with a valid HIV test. In Zambia, our selection model gives an HIV prevalence estimate of 16.3% (95% CI 11.0% - 18.4%), compared to 12.1% among those with a valid HIV test. Therefore, those who decline to test in Zambia are found to be more likely to be HIV positive. Conclusions: Our approach corrects for selection bias in HIV prevalence estimates, is possible to implement even when HIV prevalence or non-participation is very high or very low, and provides a practical solution to account for both sampling and parameter uncertainty in the estimation of confidence intervals. The wide confidence intervals estimated in an example with high HIV prevalence indicate that it is difficult to correct statistically for the bias that may occur when a large proportion of people refuse to test.
Resumo:
BACKGROUND: Evidence suggests that genetic factors may influence both schizophrenia (Scz) and its clinical presentation. In recent years, genome-wide association studies (GWAS) have demonstrated considerable success in identifying risk loci. Detection of "modifier loci" has the potential to further elucidate underlying disease processes.
METHODS: We performed GWAS of empirically derived positive and negative symptom scales in Irish cases from multiply affected pedigrees and a larger, independent case-control sample, subsequently combining these into a large Irish meta-analysis. In addition to single-SNP associations, we considered gene-based and pathway analyses to better capture convergent genetic effects, and to facilitate biological interpretation of these findings. Replication and testing of aggregate genetic effects was conducted using an independent European-American sample.
RESULTS: Though no single marker met the genome-wide significance threshold, genes and ontologies/pathways were significantly associated with negative and positive symptoms; notably, NKAIN2 and NRG1, respectively. We observed limited overlap in ontologies/pathways associated with different symptom profiles, with immune-related categories over-represented for negative symptoms, and addiction-related categories for positive symptoms. Replication analyses suggested that genes associated with clinical presentation are generalizable to non-Irish samples.
CONCLUSIONS: These findings strongly support the hypothesis that modifier loci contribute to the etiology of distinct Scz symptom profiles. The finding that previously implicated "risk loci" actually influence particular symptom dimensions has the potential to better delineate the roles of these genes in Scz etiology. Furthermore, the over-representation of distinct gene ontologies/pathways across symptom profiles suggests that the clinical heterogeneity of Scz is due in part to complex and diverse genetic factors.
Resumo:
Pessimistic Malthusian verdicts on the capacity of pre-industrial European economies to sustain a degree of real economic growth under conditions of population growth are challenged using current reconstructions of urbanisation ratios, the real wage rates of building and agricultural labourers, and GDP per capita estimated by a range of methods. Economic growth is shown to have outpaced population growth and raised GDP per capita to in excess of $1,500 (1990 $ international at PPP) in Italy during its twelfth- and thirteenth-century commercial revolution, Holland during its fifteenth- and sixteenth-century golden age, and England during the seventeenth- and eighteenth-century runup to its industrial revolution. During each of these Smithian growth episodes expanding trade and commerce sustained significant output and employment growth in the manufacturing and service sectors. These positive developments were not necessarily reflected by trends in real wage rates for the latter were powerfully influenced by associated changes in relative factor prices and the per capita supply of labour as workers varied the length of the working year in order to consume either more leisure or more goods. The scale of the divergence between trends in real wage rates and GDP per capita nevertheless varied a great deal between countries for reasons which have yet to be adequately explained.