35 resultados para rainfall erosion
Resumo:
Aim: Retrospective genetic monitoring, comparing genetic diversity of extant populations with historical samples, can provide valuable and often unique insights into evolutionary processes informing conservation strategies. The Yellow marsh saxifrage (Saxifraga hirculus) is listed as ‘critically endangered’ in Ireland with only two extant populations. We quantified genetic changes over time and identified genotypes in extant populations that could be used as founders for reintroductions to sites where the species is extinct.
Location: Ireland.
Methods: Samples were obtained from both locations where the species is currently found, including the most threatened site at the Garron Plateau, Co. Antrim, which held only 13 individuals during 2011. Herbarium samples covering the period from 1886 to 1957 were obtained including plants from the same area as the most threatened population, as well as three extinct populations. In total, 422 individuals (319 present-day and 103 historical) were genotyped at six microsatellite loci. Species distribution modelling was used to identify areas of potentially suitable habitat for reintroductions.
Results: Level of phenotypic diversity within the most threatened population was significantly lower in the present-day compared with historical samples but levels of observed heterozygosity and number of alleles, whilst reduced, did not differ significantly. However, Bayesian clustering analysis suggested gradual lineage replacement over time. All three measures of genetic diversity were generally lower at the most threatened population compared with the more substantial extant populations in Co. Mayo. Species distribution modelling suggested that habitat at one site where the species is extinct may be suitable for reintroduction.
Main conclusions: The dominant genetic lineage in the most threatened population is rare elsewhere; thus, care needs to be taken when formulating any potential reintroduction programme. Our findings highlight both the need for genetic monitoring of threatened populations, but also for its swift implementation before levels of diversity become critically low.
Resumo:
South Africa's southwestern Cape occupies a critical transition zone between Southern Hemisphere temperate (winter) and tropical (summer) moisture-bearing systems. In the recent geological past, it has been proposed that the relative influence of these systems may have changed substantially, but little reliable evidence regarding regional hydroclimates and rainfall seasonality exists to refine or substantiate the understanding of long-term dynamics. In this paper we present a mid-to late Holocene multi-proxy record of environmental change from a rock hyrax midden from Katbakkies Pass, located along the modern boundary between the winter and summer rainfall zones. Derived from stable carbon and nitrogen isotopes, fossil pollen and microcharcoal, these data provide a high resolution record of changes in humidity, and insight into changes in rainfall seasonality. Whereas previous work concluded that the site had generally experienced only subtle environmental change during the Holocene, our records indicate that significant, abrupt changes have occurred in the region over the last 7000 years. Contrary to expectations based on the site's location, these data indicate that the primary determinant of changes in humidity is summer rather than winter rainfall variability, and its influence on drought season intensity and/or length. These findings are consistent with independent records of upwelling along the southern and western coasts, which indicate that periods of increased humidity are related to increased tropical easterly flow. This substantially refines our understanding of the nature of temperate and tropical circulation system dynamics in SW Africa, and how changes in their relative dominance have impacted regional environments during the Holocene.