17 resultados para polarized light
Resumo:
A novel regime is proposed where, by employing linearly polarized laser pulses at intensities 10(21) W cm(-2) (2 orders of magnitude lower than discussed in previous work [T. Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004)]), ions are dominantly accelerated from ultrathin foils by the radiation pressure and have monoenergetic spectra. In this regime, ions accelerated from the hole-boring process quickly catch up with the ions accelerated by target normal sheath acceleration, and they then join in a single bunch, undergoing a hybrid light-sail-target normal sheath acceleration. Under an appropriate coupling condition between foil thickness, laser intensity, and pulse duration, laser radiation pressure can be dominant in this hybrid acceleration. Two-dimensional particle-in-cell simulations show that 1.26 GeV quasimonoenergetic C6+ beams are obtained by linearly polarized laser pulses at intensities of 10(21) W cm(-2).
Control of ionization and dissociation of H2+ by elliptically polarized ultra-short VUV laser pulses
Resumo:
Resonance-enhanced multiphoton ionization of H2 + exposed to elliptically polarized VUV laser pulses is investigated. Differential cross sections for nuclei and electron are obtained using numerical solutions of the time-dependent Schrödinger equation. In this work in progress, we explore the dependence of the dissociative ionization observables with the polarization of the light.