28 resultados para particle Swarm Optimization
Resumo:
This article introduces a resource allocation solution capable of handling mixed media applications within the constraints of a 60 GHz wireless network. The challenges of multimedia wireless transmission include high bandwidth requirements, delay intolerance and wireless channel availability. A new Channel Time Allocation Particle Swarm Optimization (CTA-PSO) is proposed to solve the network utility maximization (NUM) resource allocation problem. CTA-PSO optimizes the time allocated to each device in the network in order to maximize the Quality of Service (QoS) experienced by each user. CTA-PSO introduces network-linked swarm size, an increased diversity function and a learning method based on the personal best, Pbest, results of the swarm. These additional developments to the PSO produce improved convergence speed with respect to Adaptive PSO while maintaining the QoS improvement of the NUM. Specifically, CTA-PSO supports applications described by both convex and non-convex utility functions. The multimedia resource allocation solution presented in this article provides a practical solution for real-time wireless networks.
Resumo:
The 5G network infrastructure is driven by the evolution of today's most demanding applications. Already, multimedia applications such as on-demand HD video and IPTV require gigabit- per-second throughput and low delay, while future technologies include ultra HDTV and machine-to-machine communication. Mm-Wave technologies such as IEEE 802.15.3c and IEEE 802.11ad are ideal candidates to deliver high throughput to multiple users demanding differentiated QoS. Optimization is often used as a methodology to meet throughput and delay constraints. However, traditional optimization techniques are not suited to a mixed set of multimedia applications. Particle swarm optimization (PSO) is shown as a promising technique in this context. Channel-time allocation PSO (CTA-PSO) is successfully shown here to allocate resource even in scenarios where blockage of the 60 GHz signal poses significant challenges.
Resumo:
This paper proposes an efficient learning mechanism to build fuzzy rule-based systems through the construction of sparse least-squares support vector machines (LS-SVMs). In addition to the significantly reduced computational complexity in model training, the resultant LS-SVM-based fuzzy system is sparser while offers satisfactory generalization capability over unseen data. It is well known that the LS-SVMs have their computational advantage over conventional SVMs in the model training process; however, the model sparseness is lost, which is the main drawback of LS-SVMs. This is an open problem for the LS-SVMs. To tackle the nonsparseness issue, a new regression alternative to the Lagrangian solution for the LS-SVM is first presented. A novel efficient learning mechanism is then proposed in this paper to extract a sparse set of support vectors for generating fuzzy IF-THEN rules. This novel mechanism works in a stepwise subset selection manner, including a forward expansion phase and a backward exclusion phase in each selection step. The implementation of the algorithm is computationally very efficient due to the introduction of a few key techniques to avoid the matrix inverse operations to accelerate the training process. The computational efficiency is also confirmed by detailed computational complexity analysis. As a result, the proposed approach is not only able to achieve the sparseness of the resultant LS-SVM-based fuzzy systems but significantly reduces the amount of computational effort in model training as well. Three experimental examples are presented to demonstrate the effectiveness and efficiency of the proposed learning mechanism and the sparseness of the obtained LS-SVM-based fuzzy systems, in comparison with other SVM-based learning techniques.
Resumo:
Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.
Resumo:
Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.
Resumo:
This paper develops an integrated optimal power flow (OPF) tool for distribution networks in two spatial scales. In the local scale, the distribution network, the natural gas network, and the heat system are coordinated as a microgrid. In the urban scale, the impact of natural gas network is considered as constraints for the distribution network operation. The proposed approach incorporates unbalance three-phase electrical systems, natural gas systems, and combined cooling, heating, and power systems. The interactions among the above three energy systems are described by energy hub model combined with components capacity constraints. In order to efficiently accommodate the nonlinear constraint optimization problem, particle swarm optimization algorithm is employed to set the control variables in the OPF problem. Numerical studies indicate that by using the OPF method, the distribution network can be economically operated. Also, the tie-line power can be effectively managed.
Resumo:
In the production process of polyethylene terephthalate (PET) bottles, the initial temperature of preforms plays a central role on the final thickness, intensity and other structural properties of the bottles. Also, the difference between inside and outside temperature profiles could make a significant impact on the final product quality. The preforms are preheated by infrared heating oven system which is often an open loop system and relies heavily on trial and error approach to adjust the lamp power settings. In this paper, a radial basis function (RBF) neural network model, optimized by a two-stage selection (TSS) algorithm combined with partial swarm optimization (PSO), is developed to model the nonlinear relations between the lamp power settings and the output temperature profile of PET bottles. Then an improved PSO method for lamp setting adjustment using the above model is presented. Simulation results based on experimental data confirm the effectiveness of the modelling and optimization method.
Resumo:
Various scientific studies have explored the causes of violent behaviour from different perspectives, with psychological tests, in particular, applied to the analysis of crime factors. The relationship between bi-factors has also been extensively studied including the link between age and crime. In reality, many factors interact to contribute to criminal behaviour and as such there is a need to have a greater level of insight into its complex nature. In this article we analyse violent crime information systems containing data on psychological, environmental and genetic factors. Our approach combines elements of rough set theory with fuzzy logic and particle swarm optimisation to yield an algorithm and methodology that can effectively extract multi-knowledge from information systems. The experimental results show that our approach outperforms alternative genetic algorithm and dynamic reduct-based techniques for reduct identification and has the added advantage of identifying multiple reducts and hence multi-knowledge (rules). Identified rules are consistent with classical statistical analysis of violent crime data and also reveal new insights into the interaction between several factors. As such, the results are helpful in improving our understanding of the factors contributing to violent crime and in highlighting the existence of hidden and intangible relationships between crime factors.
Resumo:
Traditional internal combustion engine vehicles are a major contributor to global greenhouse gas emissions and other air pollutants, such as particulate matter and nitrogen oxides. If the tail pipe point emissions could be managed centrally without reducing the commercial and personal user functionalities, then one of the most attractive solutions for achieving a significant reduction of emissions in the transport sector would be the mass deployment of electric vehicles. Though electric vehicle sales are still hindered by battery performance, cost and a few other technological bottlenecks, focused commercialisation and support from government policies are encouraging large scale electric vehicle adoptions. The mass proliferation of plug-in electric vehicles is likely to bring a significant additional electric load onto the grid creating a highly complex operational problem for power system operators. Electric vehicle batteries also have the ability to act as energy storage points on the distribution system. This double charge and storage impact of many uncontrollable small kW loads, as consumers will want maximum flexibility, on a distribution system which was originally not designed for such operations has the potential to be detrimental to grid balancing. Intelligent scheduling methods if established correctly could smoothly integrate electric vehicles onto the grid. Intelligent scheduling methods will help to avoid cycling of large combustion plants, using expensive fossil fuel peaking plant, match renewable generation to electric vehicle charging and not overload the distribution system causing a reduction in power quality. In this paper, a state-of-the-art review of scheduling methods to integrate plug-in electric vehicles are reviewed, examined and categorised based on their computational techniques. Thus, in addition to various existing approaches covering analytical scheduling, conventional optimisation methods (e.g. linear, non-linear mixed integer programming and dynamic programming), and game theory, meta-heuristic algorithms including genetic algorithm and particle swarm optimisation, are all comprehensively surveyed, offering a systematic reference for grid scheduling considering intelligent electric vehicle integration.
Resumo:
This study proposes an approach to optimally allocate multiple types of flexible AC transmission system (FACTS) devices in market-based power systems with wind generation. The main objective is to maximise profit by minimising device investment cost, and the system's operating cost considering both normal conditions and possible contingencies. The proposed method accurately evaluates the long-term costs and benefits gained by FACTS devices (FDs) installation to solve a large-scale optimisation problem. The objective implies maximising social welfare as well as minimising compensations paid for generation re-scheduling and load shedding. Many technical operation constraints and uncertainties are included in problem formulation. The overall problem is solved using both particle swarm optimisations for attaining optimal FDs allocation as main problem and optimal power flow as sub-optimisation problem. The effectiveness of the proposed approach is demonstrated on modified IEEE 14-bus test system and IEEE 118-bus test system.
Resumo:
This paper reviews recent experimental activity in the area of optimization, control, and application of laser accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l’Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted
protons and select monochromatic beam lets out of the broad spectrum beam. This approach could be advantageous in view
of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and
applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.
Resumo:
The interaction of an ultraintense laser pulse with a conical target is studied by means of numerical particle-in-cell simulations in the context of fast ignition. The divergence of the fast electron beam generated at the tip of the cone has been shown to be a crucial parameter for the efficient coupling of the ignition laser pulse to the precompressed fusion pellet. In this paper, we demonstrate that a focused hot electron beam is produced at the cone tip, provided that electron currents flowing along the surfaces of the cone sidewalls are efficiently generated. The influence of various interaction parameters over the formation of these wall currents is investigated. It is found that the strength of the electron flows is enhanced for high laser intensities, low density targets, and steep density gradients inside the cone. The hot electron energy distribution obeys a power law for energies of up to a few MeV, with the addition of a high-energy Maxwellian tail.