86 resultados para paralytic shellfish poisoning
Resumo:
Marine dinoflagellates of the genera Alexandrium are well known producers of the potent neurotoxic paralytic shellfish toxins that can enter the food web and ultimately present a serious risk to public health in addition to causing huge economic losses. Direct coastal monitoring of Alexandrium spp. can provide early warning of potential shellfish contamination and risks to consumers and so a rapid, sensitive, portable and easy-to-use assay has been developed for this purpose using an innovative planar waveguide device. The disposable planar waveguide is comprised of a transparent substrate onto which an array of toxin-protein conjugates is deposited, assembled in a cartridge allowing the introduction of sample, and detection reagents. The competitive assay format uses a high affinity antibody to paralytic shellfish toxins with a detection signal generated via a fluorescently labelled secondary antibody. The waveguide cartridge is analysed by a simple reader device and results are displayed on a laptop computer. Assay speed has been optimised to enable measurement within 15 min. A rapid, portable sample preparation technique was developed for Alexandrium spp. in seawater to ensure analysis was completed within a short period of time. The assay was validated and the LOD and CCß were determined as 12 pg/mL and 20 pg/mL respectively with an intra-assay CV of 11.3% at the CCß and an average recovery of 106%. The highly innovative assay was proven to accurately detect toxin presence in algae sampled from the US and European waters at an unprecedented cell density of 10 cells/L. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Despite ethical and technical concerns, the in vivo method, or more commonly referred to mouse bioassay (MBA), is employed globally as a reference method for phycotoxin analysis in shellfish. This is particularly the case for paralytic shellfish poisoning (PSP) and emerging toxin monitoring. A high-performance liquid chromatography method (HPLC-FLD) has been developed for PSP toxin analysis, but due to difficulties and limitations in the method, this procedure has not been fully implemented as a replacement. Detection of the diarrhetic shellfish poisoning (DSP) toxins has moved towards LC-mass spectrometry (MS) analysis, whereas the analysis of the amnesic shellfish poisoning (ASP) toxin domoic acid is performed by HPLC. Although alternative methods of detection to the MBA have been described, each procedure is specific for a particular toxin and its analogues, with each group of toxins requiring separate analysis utilising different extraction procedures and analytical equipment. In addition, consideration towards the detection of unregulated and emerging toxins on the replacement of the MBA must be given. The ideal scenario for the monitoring of phycotoxins in shellfish and seafood would be to evolve to multiple toxin detection on a single bioanalytical sensing platform, i.e. 'an artificial mouse'. Immunologically based techniques and in particular surface plasmon resonance technology have been shown as a highly promising bioanalytical tool offering rapid, real-time detection requiring minimal quantities of toxin standards. A Biacore Q and a prototype multiplex SPR biosensor have been evaluated for their ability to be fit for purpose for the simultaneous detection of key regulated phycotoxin groups and the emerging toxin palytoxin. Deemed more applicable due to the separate flow channels, the prototype performance for domoic acid, okadaic acid, saxitoxin, and palytoxin calibration curves in shellfish achieved detection limits (IC20) of 4,000, 36, 144 and 46 μg/kg of mussel, respectively. A one-step extraction procedure demonstrated recoveries greater than 80 % for all toxins. For validation of the method at the 95 % confidence limit, the decision limits (CCα) determined from an extracted matrix curve were calculated to be 450, 36 and 24 μg/kg, and the detection capability (CCβ) as a screening method is ≤10 mg/kg, ≤160 μg/kg and ≤400 μg/kg for domoic acid, okadaic acid and saxitoxin, respectively.
Resumo:
A single-step lateral flow immunoassay (LFIA) was developed and validated for the rapid screening of paralytic shellfish toxins (PSTs) from a variety of shellfish species, at concentrations relevant to regulatory limits of 800 μg STX-diHCl equivalents/kg shellfish meat. A simple aqueous extraction protocol was performed within several minutes from sample homogenate. The qualitative result was generated after a 5 min run time using a portable reader which removed subjectivity from data interpretation. The test was designed to generate noncompliant results with samples containing approximately 800 μg of STX-diHCl/kg. The cross-reactivities in relation to STX, expressed as mean ± SD, were as follows: NEO: 128.9% ± 29%; GTX1&4: 5.7% ± 1.5%; GTX2&3: 23.4% ± 10.4%; dcSTX: 55.6% ± 10.9%; dcNEO: 28.0% ± 8.9%; dcGTX2&3: 8.3% ± 2.7%; C1&C2: 3.1% ± 1.2%; GTX5: 23.3% ± 14.4% (n = 5 LFIA lots). There were no indications of matrix effects from the different samples evaluated (mussels, scallops, oysters, clams, cockles) nor interference from other shellfish toxins (domoic acid, okadaic acid group). Naturally contaminated sample evaluations showed no false negative results were generated from a variety of different samples and profiles (n = 23), in comparison to reference methods (MBA method 959.08, LC-FD method 2005.06). External laboratory evaluations of naturally contaminated samples (n = 39) indicated good correlation with reference methods (MBA, LC-FD). This is the first LFIA which has been shown, through rigorous validation, to have the ability to detect most major PSTs in a reliable manner and will be a huge benefit to both industry and regulators, who need to perform rapid and reliable testing to ensure shellfish are safe to eat.
Resumo:
Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n = 256) from European waters, collected 2009-2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (DTX1/DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2 × 2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray.
Resumo:
Saxitoxin and its analogs, the causative agents of paralytic shellfish poisoning (PSP), are a worldwide threat to seafood safety. Effective monitoring of potentially contaminated fishing areas as well as screening of seafood samples is necessary to adequately protect the public. While many analytical methods exist for detecting paralytic shellfish toxins (PSTs), each technique has challenges associated with routine use. One recently developed method [1] that overcomes ethical or performance-related issues of other techniques is the surface plasmon resonance (SPR) bioassay. Notwithstanding the advantages of this method, much research remains in optimizing the sensor substrate and assay conditions to create a robust technique for rapid and sensitive measurement of PSTs. This manuscript describes a more rigorous and stable SPR inhibition immunoassay through optimization of the surface chemistry as well as determination of optimum mixture ratios and mixing times. The final system provides rapid substrate formation (18 h saxitoxin conjugation with low reagent consumption), contains a reference channel for each assay, and is capable of triplicate measurements in a single run with detection limits well below the regulatory action level. Published by Elsevier B.V.
Resumo:
Saxitoxin (STX) is a low molecular weight neurotoxin mainly produced by certain marine dinoflagellates that, along with its family of similarly related paralytic shellfish toxins, may cause the potentially fatal intoxication known as paralytic shellfish poisoning. Illness and fatality rates are low due to the effective monitoring programs that determine when toxins exceed the established regulatory action level and effectuate shellfish harvesting closures accordingly. Such monitoring programs rely on the ability to rapidly screen large volumes of samples. Many of the screening assays currently available employ antibodies or live animals. This research focused on developing an analytical recognition element that would eliminate the challenges associated with the limited availability of antibodies and the use of animals. Here we report the discovery of a DNA aptamer that targets STX. Concentration-dependent and selective binding of the aptamer to STX was determined using a surface plasmon resonance sensor. Not only does this work represent the first reported aptamer to STX, but also the first aptamer to any marine biotoxin. A novel strategy of using a toxin-protein conjugate for DNA aptamer selection was successfully implemented to overcome the challenges associated with aptamer selection to small molecules. Taking advantage of such an approach could lead to increased diversity and accessibility of aptamers to low molecular weight toxins, which could then be incorporated as analytical recognition elements in diagnostic assays for foodborne toxin detection. The selected STX aptamer sequence is provided here, making it available to any investigator for use in assay development for the detection of STX.
Resumo:
Tetrodotoxin (TTX) is a potent neurotoxin emerging in European waters due to increasing ocean temperatures. Its detection in seafood is currently performed as a consequence of using the Association of Analytical Communities (AOAC) mouse bioassay (MBA) for paralytic shellfish poisoning (PSP) toxins, but TTX is not monitored routinely in Europe. Due to ethical and performance-related issues associated with this bioassay, the European Commission has recently published directives extending procedures that may be used for official PSP control. An AOAC-accredited high-performance liquid chromatography (HPLC) method has now been accepted by the European Union as a first action screening method for PSP toxins to replace the MBA. However, this AOAC HPLC method is not capable of detecting TTX, so this potent toxin would be undetected; thereby, a separate method of analysis is required. Surface plasmon resonance (SPR) optical biosensor technology has been proven as a potential alternative screening method to detect PSP toxins in seafood. The addition of a similar SPR inhibition assay for TTX would complement the PSP assay in removing the MBA. The present report describes the development and single laboratory validation in accordance with AOAC and IUPAC guidelines of an SPR method to be used as a rapid screening tool to detect TTX in the sea snail Charonia lampas lampas, a species which has been implicated in 2008 in the first case of human TTX poisoning in Europe. As no current regulatory limits are set for TTX in Europe, single laboratory validation was undertaken using those for PSP toxins at 800 µg/kg. The decision limit (CCa) was 100 µg/kg, with the detection capability (CCß) found to be =200 µg/kg. Repeatability and reproducibility were assessed at 200, 400, and 800 µg/kg and showed relative standard deviations of 8.3, 3.8, and 5.4 % and 7.8, 8.3, and 3.7 % for both parameters at each level, respectively. At these three respective levels, the recovery of the assay was 112, 98, and 99 %.
Resumo:
A multiplex surface plasmon resonance (SPR) biosensor method for the detection of paralytic shellfish poisoning (PSP) toxins, okadaic acid (and analogues) and domoic acid was developed. This method was compared to enzyme-linked immunosorbent assay (ELISA) methods. Seawater samples (n?=?256) from around Europe were collected by the consortia of an EU project MIcroarrays for the Detection of Toxic Algae (MIDTAL) and evaluated using each method. A simple sample preparation procedure was developed which involved lysing and releasing the toxins from the algal cells with glass beads followed by centrifugation and filtering the extract before testing for marine biotoxins by both multi-SPR and ELISA. Method detection limits based on IC20 values for PSP, okadaic acid and domoic acid toxins were 0.82, 0.36 and 1.66 ng/ml, respectively, for the prototype multiplex SPR biosensor. Evaluation by SPR for seawater samples has shown that 47, 59 and 61 % of total seawater samples tested positive (result greater than the IC20) for PSP, okadaic acid (and analogues) and domoic acid toxins, respectively. Toxic samples were received mainly from Spain and Ireland. This work has demonstrated the potential of multiplex analysis for marine biotoxins in algal and seawater samples with results available for 24 samples within a 7 h period for three groups of key marine biotoxins. Multiplex immunological methods could therefore be used as early warning monitoring tools for a variety of marine biotoxins in seawater samples.
Resumo:
Paralytic Shellfish Poisoning (PSP) is a serious human illness caused by ingestion of seafood enriched with paralytic shellfish toxins (PSTs). PSTs are neurotoxic compounds produced by marine dinoflagellates, specifically by Alexandrium spp., Gymnodinium catenatum and Pyrodinium bahamense. Every year, massive monitoring of PSTs and their producers is undertaken worldwide to avoid PSP incidences. Here we developed a sensitive, hydrolysis probe-based quantitative PCR (qPCR) assay to detect a gene essential for PST synthesis across different dinoflagellate species and genera and tested it on cDNA generated from environmental samples spiked with Alexandrium minutum or Alexandrium fundyense cells. The assay was then applied to two environmental sample series from Norway and Spain and the results were complemented with cell counts, LSU-based microarray data and toxin measurements (enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) biosensor method). The overall agreement between the results of the qPCR assay and the complementary data was good. The assay reliably detected sxtA transcripts from Alexandrium spp. and G. catenatum, even though Alexandrium spp. cell concentrations were mostly so low that they could not be quantified microscopically. Agreement between the novel assay and toxin measurements or cell counts was generally good; the few inconsistencies observed were most likely due to disparate residence times of sxtA transcripts and PSTs in seawater, or, in the case of cell counts, to dissimilar sxtA4 transcript numbers per cell in different dinoflagellate strains or species. © 2013 Elsevier B.V.
Resumo:
A lateral flow immunoassay (LFIA) has been developed and fully validated to detect the primary amnesic shellfish poisoning (ASP) toxin, domoic acid (DA). The performance characteristics of two versions of the test were investigated using spiked and naturally contaminated shellfish (mussels, scallops, oysters, clams, and cockles). The tests provide a qualitative result, to indicate the absence or presence of DA in extracts of shellfish tissues, at concentrations that are relevant to regulatory limits. The new rapid assay (LFIA version 2) was designed to overcome the performance limitations identified in the first version of the assay. The improved test uses an electronic reader to remove the subjective nature of the generated results, and the positive cut-off for screening of DA in shellfish was increased from 10 ppm (version 1) to 17.5 ppm (version 2). A simple extraction and test procedure was employed, which required minimal equipment and materials; results were available 15 min after sample preparation. Stability of the aqueous extracts at room temperature (22 C) at four time points (up to 245 min after extraction) and across a range of DA concentrations was 100.3±1.3% and 98.8±2.4% for pre- and post-buffered extracts, respectively. The assay can be used both within laboratory settings and in remote locations. The accuracy of the new assay, to indicate negative results at or below 10 ppm DA, and positive results at or above 17.5 ppm, was 99.5% (n=216 tests). Validation data were obtained from a 2-day, randomised, blind study consisting of multiple LFIA lots (n=3), readers (n=3) and operators (n=3), carrying out multiple extractions of mussel tissue (n=3) at each concentration (0, 10, 17.5, and 20 ppm). No matrix effects were observed on the performance of the assay with different species (mussels, scallops, oysters, clams, and cockles). There was no impact on accuracy or interference from other phycotoxins, glutamic acid or glutamine with various strip incubations (8, 10, and 12 min). The accuracy of the assay, using naturally contaminated samples to indicate negative results at or below 12.5 ppm and positive results at or above 17.5 ppm, was 100%. Variability between three LFIA lots across a range of DA concentrations, expressed as coefficient of variation (% CV), was 1.1±0.4% (n=2 days) based on quantitative readings from the electronic reader. During an 8 week stability study, accuracy of the method with test strips stored at various temperatures (6, 22, 37 and 50 C) was 100%. Validation for both versions included comparisons with results obtained using reference LC-UV methods. © 2013 Elsevier B.V.
Resumo:
Protein G-coated magnetic particles (MPs) were used as immobilisation supports for an antibody against okadaic acid (MAb(OA)) and carriers into a surface plasmon resonance (SPR) device for the development of a direct competitive immunosensor for okadaic acid (OA). SPR analysis of MAb(OA)-MP conjugates demonstrated that conjugations were successful with complete immobilisation of all the antibody biomolecules onto the MPs. Moreover, MAb(OA)-MP conjugates provided up to 11-fold higher SPR signals, compared to free MAb(OA). The use of conjugates in the direct competition assay provided a 3-fold lower LOD mu g/L (2.6 mu g of OA/L, equivalent to 12 mu g of OA/kg mussel meat). The presence of mussel matrix did not interfere in the OA quantification as seen in the calibration curves. Mussel samples, obtained from Ebro Delta's bays (NW Mediterranean) during a diarrheic shellfish poisoning (DSP) event and in the presence of Dinophysis sacculus, an OA producer, in the shellfish production area, were analysed with the MP-based SPR immunosensor. The OA contents correlated with those obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (y = 0.984x -5.273, R-2 = 0.789, p <0.001) and by mouse bioassay (MBA).
Resumo:
A single-step lateral flow immunoassay was developed and validated to detect okadaic acid (OA) and dinophysis toxins (DTXs), which cause diarrhetic shellfish poisoning. The performance characteristics of the test were investigated, in comparison to reference methods (liquid chromatography tandem mass spectrometry and/or bioassay), using both spiked and naturally contaminated shellfish. A portable reader was used to generate a qualitative result, indicating the absence or presence of OA-group toxins, at concentrations relevant to the maximum permitted level (MPL). Sample homogenates could be screened in 20 min (including extraction and assay time) for the presence of free toxins (OA, DTX1, DTX2). DTX3 detection could be included with the addition of a hydrolysis procedure. No matrix effects were observed from the species evaluated (mussels, scallops, oysters, and clams). Results from naturally contaminated samples (n = 72) indicated no false compliant results and no false noncompliant results at <50% MPL. Thus, the development of a new low-cost but highly effective tool for monitoring a range of important phycotoxins has been demonstrated.
Resumo:
Okadaic acid, a diarrhetic shellfish poison, domoic acid, an amnesic shellfish poison, and saxitoxin, a paralytic shellfish poison, are three of the best-known marine biotoxins. The mouse bioassay is the method most widely used to detect many of these toxins in shellfish samples, but animal welfare concerns have prompted researchers to seek alternative methods of detection. In this study, three direct competitive enzyme-linked immunosorbent assays (ELISAs), each based on antibodies raised in rabbits against a conjugate of the analyte of interest, were developed for marine biotoxin detection in mussel, oyster, and scallop. One assay was for okadaic acid, one for saxitoxin, and one for domoic acid usually detected and quantified by high-performance liquid chromatography-ultraviolet light (HPLC-UV). All three compounds and a number of related toxins were extracted quickly and simply from the shellfish matrices with a 9 : 1 mixture of ethanol and water before analysis. The detection capabilities (CC values) of the developed ELISAs were 150 mu g kg-1 for okadaic acid, 50 mu g kg-1 for domoic acid, and 5 mu g kg-1 or less for saxitoxin. The assays proved satisfactory when used over a 4-month period for the analysis of 110 real samples collected in Belgium.
Resumo:
Azaspiracid (AZA) poisoning was unknown until 1995 when shellfish harvested in Ireland caused illness manifesting by vomiting and diarrhoea. Further in vivo/vitro studies showed neurotoxicity linked with AZA exposure. However, the biological target of the toxin which will help explain such potent neurological activity is still unknown. A region of Irish coastline was selected and shellfish were sampled and tested for AZA using mass spectrometry. An outbreak was identified in 2010 and samples collected before and after the contamination episode were compared for their metabolite profile using high resolution mass spectrometry. Twenty eight ions were identified at higher concentration in the contaminated samples. Stringent bioinformatic analysis revealed putative identifications for seven compounds including, glutarylcarnitine, a glutaric acid metabolite. Glutaric acid, the parent compound linked with human neurological manifestations was subjected to toxicological investigations but was found to have no specific effect on the sodium channel (as was the case with AZA). However in combination, glutaric acid (1mM) and azaspiracid (50nM) inhibited the activity of the sodium channel by over 50%. Glutaric acid was subsequently detected in all shellfish employed in the study. For the first time a viable mechanism for how AZA manifests itself as a toxin is presented.