23 resultados para one-stop portals
Resumo:
Science based news is widely reported in the media. The ability to interact critically with such news reports is increasingly seen as a legitimate part of the science education agenda. This paper reports the findings of two studies looking at the early response and subsequent usage of a resource promoting the integration of science-based news in secondary science curriculum in Northern Ireland. This paper charts the introduction of the resource into schools. The subsequent impact on the science curriculum and the implications for teacher professional development are considered. Many science teachers demonstrate willingness and aptitude to use primary media sources within their teaching. Some who adopted the resource demonstrate the capacity to sustain the development using the resource as a catalyst in ongoing curricular change. Insights gained in this study are relevant to policy makers and curriculum developers as well as teachers seeking to promote this aspect of science education
Resumo:
We assess the effects of a realistic intrinsic model for imperfections in cluster states by introducing noisy cluster states and characterizing their role in the one-way computational model. A suitable strategy to counter-affect these non-idealities is represented by the use of small clusters, stripped of any redundancy, which leads to the search for compact schemes for one-way quantum computation. In light of this, we quantitatively address the behavior of a simple four-qubit cluster which simulates a controlled-NOT under the influences of our model for decoherence. Our scheme can be particularly useful in an all-optical setup and the strategy we address can be directly applied in those, experimental situations where small cluster states can be constucted.
Resumo:
We address the effects of natural three-qubit interactions on the computational power of one-way quantum computation. A benefit of using more sophisticated entanglement structures is the ability to construct compact and economic simulations of quantum algorithms with limited resources. We show that the features of our study are embodied by suitably prepared optical lattices, where effective three-spin interactions have been theoretically demonstrated. We use this to provide a compact construction for the Toffoli gate. Information flow and two-qubit interactions are also outlined, together with a brief analysis of relevant sources of imperfection.
Resumo:
It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Translational energy spectroscopy (TES) has been used to study state-selective one-electron capture by H and He-like ions of C, N and O in both H and H-2 within the range 250-900 eV amu(- 1). The main collision mechanisms leading to state-selective electron capture have been identified, their relative importance assessed and compared, where possible, with theoretical predictions and with any previous measurements based on photon emission spectroscopy. For one-electron capture in H-2, the relative importance of contributions from non- dissociative and dissociative capture as well as from two- electron capture into autoionizing states is found to be strikingly different for the cases considered. Our TES measurements in atomic hydrogen provide an important extension of previous measurements to energies below 1000 eV amu(-1) and show that, as the impact energy decreases, electron capture becomes more selective until only a single n product channel is significant. These product main channels are well described by reaction windows calculated using a Landau-Zener approach. However, the same approach applied to the more complex energy- change spectra observed in H-2 is found to be less successful.