21 resultados para off-road vehicles (ORVs)
Resumo:
A periodic monitoring of the pavement condition facilitates a cost-effective distribution of the resources available for maintenance of the road infrastructure network. The task can be accurately carried out using profilometers, but such an approach is generally expensive. This paper presents a method to collect information on the road profile via accelerometers mounted in a fleet of non-specialist vehicles, such as police cars, that are in use for other purposes. It proposes an optimisation algorithm, based on Cross Entropy theory, to predict road irregularities. The Cross Entropy algorithm estimates the height of the road irregularities from vehicle accelerations at each point in time. To test the algorithm, the crossing of a half-car roll model is simulated over a range of road profiles to obtain accelerations of the vehicle sprung and unsprung masses. Then, the simulated vehicle accelerations are used as input in an iterative procedure that searches for the best solution to the inverse problem of finding road irregularities. In each iteration, a sample of road profiles is generated and an objective function defined as the sum of squares of differences between the ‘measured’ and predicted accelerations is minimized until convergence is reached. The reconstructed profile is classified according to ISO and IRI recommendations and compared to its original class. Results demonstrate that the approach is feasible and that a good estimate of the short-wavelength features of the road profile can be detected, despite the variability between the vehicles used to collect the data.
Resumo:
Bridge structures are subject to continuous degradation due to the environment, ageing and excess loading. Monitoring of bridges is a key part of any maintenance strategy as it can give early warning if a bridge is becoming unsafe. This paper will theoretically assess the ability of a vehicle fitted with accelerometers on its axles to detect changes in damping of bridges, which may be the result of damage. Two vehicle models are used in this investigation. The first is a two degree-of-freedom quarter-car and the second is a four degree-of-freedom halfcar. The bridge is modelled as a simply supported beam and the interaction between the vehicle and the bridge is a coupled dynamic interaction algorithm. Both smooth and rough road profiles are used in the simulation and results indicate that changes in bridge damping can be detected by the vehicle models for a range of vehicle velocities and bridge spans.
Resumo:
This paper describes a ‘drive-by’ method of bridge inspection using an instrumented vehicle. Accelerometers on the vehicle are proposed as a means of detecting damage on the bridge in the time it takes for the vehicle to cross the bridge at full highway speed. For a perfectly smooth road profile, the method is shown to be feasible. Changes in bridge damping, which is an indicator of damage, are clearly visible in the acceleration signal of a quarter-car vehicle on a smooth road surface modelled using MatLab. When road profile is considered, the influence of changes in bridge damping on the vehicle acceleration signal is much less clear. However, when a half-car model is used on a road with a rough profile, it is again possible to detect changes in bridge damping, provided the vehicle has two identical axles.
Resumo:
The axle forces applied by a vehicle through its wheels are a critical part of the interaction between vehicles, pavements and bridges. Therefore, the minimisation of these forces is important in order to promote long pavement life spans and ensure that bridge loads are small. Moreover, as the road surface roughness affects the vehicle dynamic forces, the monitoring of pavements for highways and bridges is an important task. This paper presents a novel algorithm to identify these dynamic interaction forces which involves direct instrumentation of a vehicle with accelerometers. The ability of this approach to predict the pavement roughness is also presented. Moving force identification theory is applied to a vehicle model in theoretical simulations in order to obtain the interaction forces and pavement roughness from the measured accelerations. The method is tested for a range of bridge spans in simulations and the influence of road roughness level on the accuracy of the results is investigated. Finally, the challenge for the real-world problem is addressed in a laboratory experiment.
Resumo:
A conventional way to identify bridge frequencies is utilizing vibration data measured directly from the bridge. A drawback with this approach is that the deployment and maintenance of the vibration sensors are generally costly and time-consuming. One way to cope with the drawback is an indirect approach utilizing vehicle vibrations while the vehicle passes over the bridge. In the indirect approach, however, the vehicle vibration includes the effect of road surface roughness, which makes it difficult to extract the bridge modal properties. One solution may be subtracting signals of two trailers towed by a vehicle to reduce the effect of road surface roughness. A simplified vehicle-bridge interaction model is used in the numerical simulation; the vehicle - trailer and bridge system are modeled as a coupled model. In addition, a laboratory experiment is carried out to verify results of the simulation and examine feasibility of the damage detection by the indirect method.
Resumo:
A conventional way to identify bridge frequencies is utilizing vibration data measured directly from the bridge. A drawback with this approach is that the deployment and maintenance of the vibration sensors are generally costly and time-consuming. One of the solutions is in a drive-by approach utilizing vehicle vibrations while the vehicle passes over the bridge. In this approach, however, the vehicle vibration includes the effect of road surface roughness, which makes it difficult to extract the bridge modal properties. This study aims to examine subtracting signals of two trailers towed by a vehicle to reduce the effect of road surface roughness. A simplified vehicle-bridge interaction model is used in the numerical simulation; the vehicle - trailer and bridge system are modeled as a coupled model. In addition, a laboratory experiment is carried out to verify results of the simulation and examine feasibility of the damage detection by the drive-by method.