97 resultados para occupation tailoring


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tailoring optical properties of artificial metamaterials, whose optical properties go beyond the limitations of conventional and naturally occurring materials, is of importance in fundamental research and has led to many important applications such as security imaging, invisible cloak, negative refraction, ultrasensitive sensing, transformable and switchable optics. Herein, by precisely controlling the size, symmetry and topology of alphabetical metamaterials with U, S, Y, H, U-bar and V shapes, we have obtained highly tunable optical response covering visible-to-infrared (Vis-NIR) optical frequency. In addition, we show a detailed study on the physical origin of resonance modes, plasmonic coupling, the dispersion of electronic and magnetic surface plasmon polaritons, and the possibility of negative refraction. We have found that all the electronic and magnetic modes follow the dispersion of surface plasmon polaritons thus essentially they are electronic- and magnetic-surface-plasmon-polaritons-like (ESPP-like and MSPP-like) modes resulted from diffraction coupling between localized surface plasmon and freely-propagating light. Based on the fill factor and formula of magnetism permeability, we predict that the alphabetical metamaterials should show the negative refraction capability in visible optical frequency. Furthermore, we have demonstrated the specific ultrasensitive surface enhanced Raman spectroscopy (SERS) sensing of monolayer molecules and femtomolar food contaminants by tuning their resonance to match the laser wavelength, or by tuning the laser wavelength to match the plasmon resonance of metamaterials. Our tunable alphabetical metamaterials provide a generic platform to study the electromagnetic properties of metamaterials and explore the novel applications in optical frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and functional information encoded in DNA combined with unique properties of nanomaterials could be of use for the construction of novel biocomputational circuits and intelligent biomedical nanodevices. However, at present their practical applications are still limited by either low reproducibility of fabrication, modest sensitivity, or complicated handling procedures. Here, we demonstrate the construction of label-free and switchable molecular logic gates that use specific conformation modulation of a guanine- and thymine- rich DNA, while the optical readout is enabled by the tunable alphabetical metamaterials, which serve as a substrate for surface enhanced Raman spectroscopy (MetaSERS). By computational and experimental investigations, we present a comprehensive solution to tailor the plasmonic responses of MetaSERS with respect to the metamaterial geometry, excitation energy, and polarization. Our tunable MetaSERS-based DNA logic is simple to operate, highly reproducible, and can be stimulated by ultra-low concentration of the external inputs, enabling an extremely sensitive detection of mercury ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aiming at inexpensive Brønsted-acidic ionic liquids, suitable for industrial-scale catalysis, a family of protonic ionic liquids based on nitrogen bases and sulfuric acid has been developed. Variation of the molar ratio of sulfuric acid, χH2SO4, was used to tune acidity. The liquid structure was studied using 1H NMR and IR spectroscopies, revealing the existence of hydrogen-bonded clusters, [(HSO4)(H2SO4)]−, for χH2SO4 > 0.50. Acidity, quantified by Gutmann Acceptor Number (AN), was found to be closely related to the liquid structure. The ionic liquids were employed as acid catalysts in a model reaction; Fischer esterification of acetic acid with 1-butanol. The reaction rate depended on two factors; for χH2SO4 > 0.50, the key parameter was acidity (expressed as AN value), while for χH2SO4 > 0.50 it was the mass transport (solubility of starting materials in the ionic liquid phase). Building on this insight, the ionic liquid catalyst and reaction conditions have been chosen. Conversion values of over 95% were achieved under exceptionally mild conditions, and using an inexpensive ionic liquid, which could be recycled up to eight times without diminution in conversion or selectivity. It has been demonstrated how structural studies can underpin rational design and development of an ionic liquid catalyst, and in turn lead to a both greener and economically viable process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of nonlinear frequency coupling in an oxygen plasma excited by two odd harmonics at moderate pressure is investigated using a numerical model. Through variations in the voltage ratio and phase shift between the frequency components changes in ionization dynamics and sheath voltages are demonstrated. Furthermore, a regime in which the voltage drop across the plasma sheath is minimised is identified. This regime provides a significantly higher ion flux than a single frequency discharge driven by the lower of the two frequencies alone. These operating parameters have potential to be exploited for plasma processes requiring low ion bombardment energies but high ion fluxes. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Editorial Note: Within a 48-hour period during January 2014, the JMA co-editors received two papers—those of Curtis Runnels and Thomas P. Leppard printed above—that, quite fortuitously, each addressed the topic of Mediterranean island colonization by archaic hominins, albeit from radically different perspectives. Neither author was aware of the other’s paper, nor has either article subsequently been revised to take account of the other. Realizing the widespread current interest in this subject and the possibility for productive debate prompted by such variant approaches, we commissioned three sets of comments and invited Runnels and Leppard to respond. We are pleased to publish this discussion around questions of great importance for our understanding of the earliest insular prehistory of the Mediterranean, and with significant implications reaching well beyond it.

Journal of Mediterranean Archaeology 27.2 (2014) 255-278

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and functional information encoded in DNA combined with unique properties of nanomaterials could be of use for the construction of novel biocomputational circuits and intelligent biomedical nanodevices. However, at present their practical applications are still limited by either low reproducibility of fabrication, modest sensitivity, or complicated handling procedures. Here, we demonstrate the construction of label-free and switchable molecular logic gates (AND, INHIBIT, and OR) that use specific conformation modulation of a guanine- and thymine-rich DNA, while the optical readout is enabled by the tunable metamaterials which serve as a substrate for surface enhanced Raman spectroscopy (MetaSERS). Our MetaSERS-based DNA logic is simple to operate, highly reproducible, and can be stimulated by ultra-low concentration of the external inputs, enabling an extremely sensitive detection of mercury ions down to 2×10-4 ppb, which is four orders of magnitude lower than the exposure limit allowed by United States Environmental Protection Agency

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Occupation of the landscape took many different forms and is one of the predominant ways of viewing settlement within the medieval world. Buildings are the most effective method of occupying space, both physically and psychologically. This paper will draw on current research into fourteenth century manorial buildings in England and explore how they were used to occupy both the landscape and the communities associated with them.