42 resultados para nonionic surfactant
Resumo:
An environment friendly arsenic removal technique from contaminated soil with high iron content has been studied. A natural surfactant extracted from soapnut fruit, phosphate solution and their mixture was used separately as extractants. The mixture was most effective in desorbing arsenic, attaining above 70 % efficiency in the pH range of 4–5. Desorption kinetics followed Elovich model. Micellar solubilization by soapnut and arsenic exchange mechanism by phosphate are the probable mechanisms behind arsenic desorption. Sequential extraction reveals that the mixed soapnut–phosphate system is effective in desorbing arsenic associated with amphoteric–Fe-oxide forms. No chemical change to the wash solutions was observed by Fourier transform-infrared spectra. Soil:solution ratio, surfactant and phosphate concentrations were found to affect the arsenic desorption process. Addition of phosphate boosted the performance of soapnut solution considerably. Response surface methodology approach predicted up to 80 % desorption of arsenic from soil when treated with a mixture of ≈1.5 % soapnut, ≈100 mM phosphate at a soil:solution ratio of 1:30.
Resumo:
Plasma-induced non-equilibrium liquid chemistry is used to synthesize gold nanoparticles (AuNPs) without using any reducing or capping agents. The morphology and optical properties of the synthesized AuNPs are characterized by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. Plasma processing parameters affect the particle shape and size and the rate of the AuNP synthesis process. Particles of different shapes (e. g. spherical, triangular, hexagonal, pentagonal, etc) are synthesized in aqueous solutions. In particular, the size of the AuNPs can be tuned from 5 nm to several hundred nanometres by varying the initial gold precursor (HAuCl4) concentration from 2.5 mu M to 1 mM. In order to reveal details of the basic plasma-liquid interactions that lead to AuNP synthesis, we have measured the solution pH, conductivity and hydrogen peroxide (H2O2) concentration of the liquid after plasma processing, and conclude that H2O2 plays the role of the reducing agent which converts Au+3 ions to Au-0 atoms, leading to nucleation growth of the AuNPs.
Resumo:
Alpha-tocopherol (aT), the predominant form of vitamin E in mammals, is thought to prevent oxidation of polyunsaturated fatty acids. In the lung, aT is perceived to be accumulated in alveolar type II cells and secreted together with surfactant into the epithelial lining fluid. Conventionally, determination of aT and related compounds requires extraction with organic solvents. This study describes a new method to determine and image the distribution of aT and related compounds within cells and tissue sections using the light-scattering technique of Raman microscopy to enable high spatial as well as spectral resolution. This study compared the nondestructive analysis by Raman microscopy of vitamin E, in particular aT, in biological samples with data obtained using conventional HPLC analysis. Raman spectra were acquired at spatial resolutions of 2-0.8 microm. Multivariate analysis techniques were used for analyses and construction of corresponding maps showing the distribution of aT, alpha-tocopherol quinone (aTQ), and other constituents (hemes, proteins, DNA, and surfactant lipids). A combination of images enabled identification of colocalized constituents (heme/aTQ and aT/surfactant lipids). Our data demonstrate the ability of Raman microscopy to discriminate between different tocopherols and oxidation products in biological specimens without sample destruction. By enabling the visualization of lipid-protein interactions, Raman microscopy offers a novel method of investigating biological characterization of lipid-soluble compounds, including those that may be embedded in biological membranes such as aT.
Resumo:
In this study the nature of the interaction between Tween-20 and lactate dehydrogenase (LDH) was investigated using isothermal titration calorimetry (ITC). In addition the effects of the protein and surfactant on the interfacial properties were followed with interfacial rheology and surface tension measurements in order to understand the mechanism by which the surfactant prevents protein adsorption to the air– water interface. Comparisons were made with Tween-40 and Tween-80 in order to further investigate the mechanism. ITC measurements indicated a weak, probably hydrophobic, interaction between Tween-20 and LDH. Prevention of LDH adsorption to the air–water interface by the Tween surfactants was correlated with surface energy rather than surfactant CMC. While surface pressure appears to be the main driving force for the displacement of LDH from the air–water interface by Tween-20 a solubilisation mechanism may exist for other protein molecules. More generally the results of this study highlight the value of the use of ITC and interfacial measurements in characterising the surface behaviour of mixed surfactant and protein systems.
Resumo:
Anionic and cationic alkyl-chain effects on the self-aggregation of both neat and aqueous solutions of 1-alkyl-3-methylimidazolium alkylsulfonate salts ([C(n)H(2n+ 1)mim][CmH2m+1SO3]; n = 8, 10 or 12; m = 1 and n = 4 or 8; m = 4 or 8) have been investigated. Some of these salts constitute a novel family of pure catanionic surfactants in aqueous solution. Examples of this class of materials are rare; they are distinct from both mixed cationic-anionic surfactants (obtained by mixing two salts) and gemini surfactants (with two or more amphiphilic groups bound by a covalent linker). Fluorescence spectroscopy and interfacial tension measurements have been used to determine critical micelle concentrations (CMCs), surface activity, and to compare the effects of the alkyl-substitution patterns in both the cation and anion on the surfactant properties of these salts. With relatively small methylsulfonate anions (n = 8, 10 and 12, m = 1), the salts behave as conventional single chain cationic surfactants, showing a decrease of the CMC upon increase of the alkyl chain length (n) in the cation. When the amphiphilic character is present in both the cation and anion (n = 4 and 8, m = 4 and 8), novel catanionic surfactants with CMC values lower than those of the corresponding cationic analogues, and which exhibited an unanticipated enhanced reduction of surface tension, were obtained. In addition, the thermotropic phase behaviour of [C(8)H(18)mim][C8H18SO3] (n = m = 8) was investigated using variable temperature X-ray scattering, polarising optical microscopy and differential scanning calorimetry; formation of a smectic liquid crystalline phase with a broad temperature range was observed.
Resumo:
BACKGROUND: In vitro release testing of vaginal formulations is usually performed in a one-compartment model (OCM) where the release medium, usually comprising pH-adjusted water, an aqueous surfactant solution or a solvent-water solution, provides sink conditions throughout the release experiment. Although this model is useful in evaluating the effect of formulation parameters upon release, it rarely reflects in vivo conditions. Here we report use of a two-compartment diffusion cell model (TCM, comprising a small volume donor, a large volume receptor, and separated by a model epithelial membrane) to more closely mimic in vivo vaginal release and tissue absorption following administration of a UC781 vaginal ring.
METHODS: Macaque-sized matrix silicone elastomer vaginal rings containing 100mg UC781 were prepared by injection molding, and in vitro release testing performed using both OCM (20mL simulated vaginal fluid, SVF) and TCM (5mL SVF in donor cell and variable quantities of Tween 80; silicone elastomer membrane; 100mL 3:2 ethanol/water in receptor cell). In the TCM, drug levels were measured by HPLC in both donor and receptor cells, representing fluid and tissue levels respectively. Rings containing 100mg UC781 and 10% w/w Tween 80 were also manufactured and tested.
RESULTS: The amount of UC781 released from rings was significantly influenced by the choice of release model. Greatest release (56mg/14 days) was measured in the ethanol/water OCM, compared with no measurable release into SVF only. Increasing the concentration of Tween 80 in the SVF medium (1, 3 and 5% w/w) led to increased UC781 release (11, 16 and 18mg, respectively), demonstrating that vaginal fluid solubility of UC781 may be rate-determining in vivo. In the TCM, UC781 accumulates in the receptor cell medium over time, despite not being measured in the donor medium containing the ring device. Incorporation of Tween 80 directly into the ring provided enhanced release in both donor and receptor cells.
CONCLUSIONS: Release of UC781 was influenced by the choice of release medium and the inclusion of Tween 80 in the ring. Although use of SVF-only in the OCM indicated no measurable UC781 release from rings, data from the TCM confirms that UC781 is not only released but is also capable of penetrating across the model epithelial membrane. The TCM may therefore provide a more representative in vitro release model for mimicking in vivo absorption.
Resumo:
Colloidal gas aphrons (CGAs) are micron-sized gas bubbles of 25–30 µm in diameter produced by a high-speed stirrer in a vessel containing dilute surfactant solution. These bubbles, because of their small size, exhibit some colloidal properties. In this work, CGAs were used to separate fine fibres from a lean slurry of cellulosic pulp in a flotation column. The pulp fibres were recovered as foamate from the top. Sodium dodecyl sulphate at a concentration of 2.0 kg/m3 was used as a surfactant to generate the CGAs in a spinning disc apparatus. The results indicated that up to 70% flotation efficiency could be obtained within a short column height of 0.3–0.35 m. This technique can be applied to recover fine cellulosic pulp from paper-machine backwater.
Resumo:
Colloidal gas aphrons (CGAs) are micron-sized bubbles, which are produced by stirring a dilute surfactant solution at a high speed. In this work, CGAs have been used to clarify oily wastewater by flotation technique. The CGAs sparging rate was a critical factor that governed the efficiency of the process. A model for the determination of the mass transfer coefficient is also developed for the purpose of process design.
Resumo:
We describe perfluoropolyether (PFPE) surfactants which are capable of stabilising the water/CO2 interface and present FTIR spectroscopic evidence for the formation of water in supercritical carbon dioxide microemulsions. A wide variety of single chain surfactants of differing chain lengths but similar structure has been screened and the effect of the surfactant chain length on the water uptake was studied. The ammonium carboxylate of the PFPE surfactant Krytox FSL(TM) with an average molecular weight of 2500 g mol(-1) was demonstrated to be the surfactant capable of dissolving the most water out of all the tested surfactants and hence to have the optimum chain length. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new method of sol-gel polymer template synthesis of mesoporous catalytic thin films has been proposed which allows controlling the chemical nature of the film, the porosity, thickness and loading with an active species. The mesoporous films with a long-order structure can be obtained in a narrow range of surfactant-to-metal precursor molar ratios from 0.006 to 0.009. The catalytic film thickness was varied from 300 to 1000 nm while providing a uniform catalyst distribution with a desired catalyst loading (1 wt. % Au nanoparticles) throughout the film. The films were characterized by TEM, SEM, ethanol adsorption and contact angle measurements. The calcination of the as-synthesized films at 573 K reduced Ti4+ sites to Ti3+. A 300 nm thick Au-containing film showed an initial TOF of 1.4 s(-1) and a selectivity towards unsaturated alcohols as high as 90% in the hydrogenation of citral. Thicker films demonstrated a high selectivity towards the saturated aldehyde (above 55%) and a lower intrinsic catalytic activity (initial TOF of 0.7-0.9 s(-1)) in the absence of internal diffusion limitations.