112 resultados para non-additive effect
Resumo:
The effect of glycosylation on susceptibility of skin collagen to collagenase digestion was studied in a skin sample obtained at autopsy from the interscapular region of a 24 year old white male who had died of an acute illness and who had no history of diabetes. Homogeneous suspensions of insoluble collagen were prepared, and were incubated in 50 mmol l-1 dextrose at pH 7.35 and 37 degrees C for 7 days. Non-enzymatic glycosylation measured by the weak acid hydrolysis/thiobarbituric acid method increased from 13.1 +/- 1.0 (n = 5) to 45.2 +/- 5.5 (n = 8) nmol fructose per 10 mg collagen (P less than 0.001). Digestion of collagen using clostridial collagenase was monitored by measuring (a) hydroxyproline content and (b) absorption at 206 nm of the supernatant after centrifugation to remove substrate. The rate of digestion was similar in glycosylated and control collagen. We conclude that the ketoamine link formed in non-enzymatic glycosylation does not increase the resistance of collagen to enzymatic digestion. The possibility remains that subsequent rearrangement of this link could be important in this respect.
Resumo:
To create clinically useful gold nanoparticle (AuNP) based cancer therapeutics it is necessary to co-functionalize the AuNP surface with a range of moieties; e.g. Polyethylene Glycol (PEG), peptides and drugs. AuNPs can be functionalized by creating either a mixed monolayer by attaching all the moieties directly to the surface using thiol chemistry, or by binding groups to the surface by means of a bifunctional polyethylene glycol (PEG) linker. The linker methodology has the potential to enhance bioavailability and the amount of functional agent that can be attached. While there is a large body of published work using both surface arrangements independently, the impact of attachment methodology on stability, non-specific protein adsorption and cellular uptake is not well understood, with no published studies directly comparing the two most frequently employed approaches. This paper compares the two methodologies by synthesizing and characterizing PEG and Receptor Mediated Endocytosis (RME) peptide co-functionalized AuNPs prepared using both the mixed monolayer and linker approaches. Successful attachment of both PEG and RME peptide using the two methods was confirmed using Dynamic Light Scattering, Fourier Transform Infrared Spectroscopy and gel electrophoresis. It was observed that while the 'as synthesized' citrate capped AuNPs agglomerated under physiological salt conditions, all the mixed monolayer and PEG linker capped samples remained stable at 1M NaCl, and were stable in PBS over extended periods. While it was noted that both functionalization methods inhibited non-specific protein attachment, the mixed monolayer samples did show some changes in gel electrophoresis migration profile after incubation with fetal calf serum. PEG renders the AuNP stable in-vivo however, studies with MDA-MB-231 and MCF 10A cell lines indicated that functionalization with PEG, blocks cellular uptake. It was observed that co-functionalization with RME peptide using both the mixed monolayer and PEG linker methods greatly enhanced cellular internalization compared to PEG capped AuNPs.
Resumo:
Rimming flow on the inner surface of a horizontal rotating cylinder is investigated. Using a scale analysis, a theoretical description is obtained for steady-state non-Newtonian flow. Simple lubrication theory is applied since the Reynolds number is small and the liquid film is thin. Since the Deborah number is very small the flow is viscometric. The shear-thinning number, which characterizes the shear-thinning effect, may be small or large. A general constitutive law for this kind of flow requires only a single function relating shear stress and shear rate that corresponds to a generalized Newtonian liquid. For this case the run-off condition for rimming flow is derived. Provided the run-off condition is satisfied, the existence of a continuous steady-state solution is proved. The rheological models, which show Newtonian behavior at low shear rates with transition to power-law shear thinning at moderate shear rates, are considered. Numerical results are carried out for the Carreau and Ellis models, which exhibit Newtonian behavior near the free surface and power-law behavior near the wall of the rotating cylinder.
Resumo:
Two experiments examined identification and bisection of tones varying in temporal duration (Experiment 1) or frequency (Experiment 2). Absolute identification of both durations and frequencies was influenced by prior stimuli and by stimulus distribution. Stimulus distribution influenced bisection for both stimulus types consistently, with more positively skewed distributions producing lower bisection points. The effect of distribution was greater when the ratio of the largest to smallest stimulus magnitude was greater. A simple mathematical model, temporal range frequency theory, was applied. It is concluded that (a) similar principles describe identification of temporal durations and other stimulus dimensions and (b) temporal bisection point shifts can be understood in terms of psychophysical principles independently developed in nontemporal domains, such as A. Parducci's (1965) range frequency theory.
Resumo:
It has been suggested that inflammatory processes may play a role in the development of Alzheimerâ??s disease (AD), and that nonsteroidal anti-inflammatory drug treatments may provide protection against the onset of AD. In the current study male Wistar rats were trained in two-lever operant chambers under an alternating lever cyclic-ratio ratio (ALCR) schedule. When responding showed no trends, subjects were divided into groups. One group was bilaterally injected into the CA3 area of the hippocampus with 5 μl of aggregated β-amyloid (Aβ) suspension, and one group was bilaterally injected into the CA3 area of the hippocampus with 5 μl of sterile saline. Subgroups were treated twice daily with 0.1 ml (40 mg/kg) ibuprofen administered orally. The results indicated that chronic administration of ibuprofen protected against detrimental behavioural effects following aggregated Aβ injections. Withdrawal of ibuprofen treatment from aggregated Aβ-injected subjects produced a decline in behavioural performance to the level of the non-treated aggregated Aβ-injected group. Ibuprofen treatment reduced the numbers of reactive astrocytes following aggregated Aβ injection, and withdrawal of ibuprofen resulted in an increase of reactive astrocytes. These results suggest that induced inflammatory processes may play a role in AD, and that ibuprofen treatment may protect against some of the symptoms seen in AD.
Resumo:
AIMS/HYPOTHESIS: To investigate the effect of treatment with the non-steroidal anti-inflammatory drug Sulindac on the early vascular pathology of diabetic retinopathy in the dog, and it's effect on recognised biochemical indices of hyperglycaemia-related pathophysiology. METHODS: Experimental diabetes (streptozotocin/alloxan) was induced in 22 male beagle dogs and 12 of the animals were assigned at random to receive oral Sulindac (10 mg/kg daily). Age- and sex-matched control animals were maintained as non-diabetic controls. After 4 years, several morphological parameters were quantified in the retinal microvasculature of each animal group using an established stereological method. Also, the following diabetes-associated biochemical parameters were analysed: accumulation of advanced glycation end products (AGEs), red blood cell polyol levels and antioxidant status. RESULTS: Diabetes increased red blood cell sorbitol levels when compared to non-diabetic controls (p<or =0.05), however, there was no difference in sorbitol levels between the untreated and the treated diabetic animals. No significant differences were found in red blood cell myoinositol levels between the three groups of animals. Pentosidine and other AGEs were increased two- to three-fold in the diabetic animals (p<or =0.001) although treatment with Sulindac did not affect their accumulation in diabetic skin collagen or alter diabetes-induced rises in plasma malondialdehyde. Retinal capillary basement membrane volume was significantly increased in the untreated diabetic dogs compared to non-diabetic controls or Sulindac-treated diabetic animals (p<or =0.0001). CONCLUSION/INTERPRETATION: This study has confirmed the beneficial effect of a non-steroidal anti-inflammatory drug on the early vascular pathology of diabetic retinopathy. However the treatment benefit was not dependent on inhibition of polyol pathway activity, advanced glycation, or oxidative stress.
Resumo:
Biotransformations of a series of ortho-, meta- and para-substituted ethylbenzene and propylbenzene substrates have been carried out, using Pseudomonas putida UV4, a source of toluene dioxygenase (TDO). The ortho- and para-substituted alkylbenzene substrates yielded, exclusively, the corresponding enantiopure cis-dihydrodiols of the same absolute configuration. However, the meta isomers, generally, gave benzylic alcohol bioproducts, in addition to the cis-dihydrodiols (the meta effect). The benzylic alcohols were of identical (R) absolute configuration but enantiomeric excess values were variable. The similar (2R) absolute configurations of the cis-dihydrodiols are consistent with both the ethyl and propyl groups having dominant stereodirecting effects over the other substituents. The model used earlier, to predict the regio- and stereo-chemistry of cis-dihydrodiol bioproducts derived from substituted benzene substrates has been refined, to take account of non-symmetric subsituents like ethyl or propyl groups. The formation of benzylic hydroxylation products, from meta-substituted benzene substrates, without further cis-dihydroxylation to yield triols provides a further example of the meta effect during toluene dioxygenase-catalysed oxidations.
Resumo:
A method for introducing correlations between electrons and ions that is computationally affordable is described. The central assumption is that the ionic wavefunctions are narrow, which makes possible a moment expansion for the full density matrix. To make the problem tractable we reduce the remaining many-electron problem to a single-electron problem by performing a trace over all electronic degrees of freedom except one. This introduces both one- and two-electron quantities into the equations of motion. Quantities depending on more than one electron are removed by making a Hartree-Fock approximation. Using the first-moment approximation, we perform a number of tight binding simulations of the effect of an electric current on a mobile atom. The classical contribution to the ionic kinetic energy exhibits cooling and is independent of the bias. The quantum contribution exhibits strong heating, with the heating rate proportional to the bias. However, increased scattering of electrons with increasing ionic kinetic energy is not observed. This effect requires the introduction of the second moment.
Resumo:
During bone development and repair, angiogenesis, osteogenesis and bone remodelling are closely associated processes that share some common mediators. In the present study non-adherent human bone marrow mononuclear cells under the induction of sRANKL and M-CSF, differentiated into osteoclasts with TRAP positive staining, VNR expression, and Ca-P resorptive activity. The effects of various combinations of rhBMP-2 (0, 3, 30, 300 ng/ml) and rhVEGF (0, 25 ng/ml) on osteoclastogenesis potentials were examined in this experimental system. The percentages of TRAP-positive multiple nucleated cells represent osteoclast differentiation potential and the percentages of resorptive areas in the Ca-P coated plates resemble osteoclast resorption capability. The presence of rhBMP-2 at 30 and 300 ng/ml showed inhibitory effects on osteoclast differentiation and their resorptive capability in the human osteoclast culture system. rhVEGF (25 ng/ml) enhanced the resorptive function of osteoclast whenever it was used alone or combined with 3 ng/ml rhBMP-2. However, rhVEGF induced resorptive function was inhibited by 30 ng/ml and 300 ng/ml rhBMP-2 at a dose-dependent manner. Statistical analysis demonstrated that an interactive effect exists between rhBMP-2 and rhVEGF on human osteoclastogenesis. These findings suggested that an interactive regulation may exist between BMPs and VEGF signaling pathways during osteoclastogenesis, exact mechanisms are yet to be elucidated.
Resumo:
We study the influence of non-ideal boundary and initial conditions (BIC) of a temporal analysis of products (TAP) reactor model on the data (observed exit flux) analysis. The general theory of multi-response state-defining experiments for a multi-zone TAP reactor is extended and applied to model several alternative boundary and initial conditions proposed in the literature. The method used is based on the Laplace transform and the transfer matrix formalism for multi-response experiments. Two non-idealities are studied: (1) the inlet pulse not being narrow enough (gas pulse not entering the reactor in Dirac delta function shape) and (2) the outlet non-ideality due to imperfect vacuum. The effect of these non-idealities is analyzed to the first and second order of approximation. The corresponding corrections were obtained and discussed in detail. It was found that they are negligible. Therefore, the model with ideal boundary conditions is proven to be completely adequate to the description and interpretation of transport-reaction data obtained with TAP-2 reactors.