71 resultados para network congestion control
Resumo:
This paper presents the trajectory control of a 2DOF mini electro-hydraulic excavator by using fuzzy self tuning with neural network algorithm. First, the mathematical model is derived for the 2DOF mini electro-hydraulic excavator. The fuzzy PID and fuzzy self tuning with neural network are designed for circle trajectory following. Its two links are driven by an electric motor controlled pump system. The experimental results demonstrated that the proposed controllers have better control performance than the conventional controller.
Resumo:
Reactive power has become a vital resource in modern electricity networks due to increased penetration of distributed generation. This paper examines the extended reactive power capability of DFIGs to improve network stability and capability to manage network voltage profile during transient faults and dynamic operating conditions. A coordinated reactive power controller is designed by considering the reactive power capabilities of the rotor-side converter (RSC) and the grid-side converter (GSC) of the DFIG in order to maximise the reactive power support from DFIGs. The study has illustrated that, a significant reactive power contribution can be obtained from partially loaded DFIG wind farms for stability enhancement by using the proposed capability curve based reactive power controller; hence DFIG wind farms can function as vital dynamic reactive power resources for power utilities without commissioning additional dynamic reactive power devices. Several network adaptive droop control schemes are also proposed for network voltage management and their performance has been investigated during variable wind conditions. Furthermore, the influence of reactive power capability on network adaptive droop control strategies has been investigated and it has also been shown that enhanced reactive power capability of DFIGs can substantially improve the voltage control performance.
Resumo:
Wavelet transforms provide basis functions for time-frequency analysis and have properties that are particularly useful for compression of analogue point on wave transient and disturbance power system signals. This paper evaluates the reduction properties of the wavelet transform using real power system data and discusses the application of the reduction method for information transfer in network communications.
Resumo:
Distributed quantum information processing (QIP) is a promising way to bypass problems due to unwanted interactions between elements. However, this strategy presupposes the engineering of protocols for remote processors. In many of them, pairwise entanglement is a key resource. We study a model which distributes entanglement among elements of a delocalized network without local control. The model is efficient both in finite- and infinite-dimensional Hilbert spaces. We suggest a setup of electromechanical systems to implement our proposal.
Resumo:
Closing feedback loops using an IEEE 802.11b ad hoc wireless communication network incurs many challenges sensitivity to varying channel conditions and lower physical transmission rates tend to limit the bandwidth of the communication channel. Given that the bandwidth usage and control performance are linked, a method of adapting the sampling interval based on an 'a priori', static sampling policy has been proposed and, more significantly, assuring stability in the mean square sense using discrete-time Markov jump linear system theory. Practical issues including current limitations of the 802.11 b protocol, the sampling policy and stability are highlighted. Simulation results on a cart-mounted inverted pendulum show that closed-loop stability can be improved using sample rate adaptation and that the control design criteria can be met in the presence of channel errors and severe channel contention.
Resumo:
This paper proposes a novel hybrid forward algorithm (HFA) for the construction of radial basis function (RBF) neural networks with tunable nodes. The main objective is to efficiently and effectively produce a parsimonious RBF neural network that generalizes well. In this study, it is achieved through simultaneous network structure determination and parameter optimization on the continuous parameter space. This is a mixed integer hard problem and the proposed HFA tackles this problem using an integrated analytic framework, leading to significantly improved network performance and reduced memory usage for the network construction. The computational complexity analysis confirms the efficiency of the proposed algorithm, and the simulation results demonstrate its effectiveness
Resumo:
A three-phase four-wire shunt active power filter for harmonic mitigation and reactive power compensation in power systems supplying nonlinear loads is presented. Three adaptive linear neurons are used to tackle the desired three-phase filter current templates. Another feedforward three-layer neural network is adopted to control the output filter compensating currents online. This is accomplished by producing the appropriate switching patterns of the converter's legs IGBTs. Adequate tracking of the filter current references is obtained by this method. The active filter injects the current required to compensate for the harmonic and reactive components of the line currents, Simulation results of the proposed active filter indicate a remarkable improvement in the source current waveforms. This is reflected in the enhancement of the unified power quality index defined. Also, the filter has exhibited quite a high dynamic response for step variations in the load current, assuring its potential for real-time applications