181 resultados para nerve grafts
Resumo:
Previous research shows that approximately half of the coagulase-negative staphylococci (CNS) isolated from patients in the intensive care unit (ICU) at Belfast City Hospital were resistant to methicillin. The presence of this relatively high proportion of methicillin-resistance genetic material gives rise to speculation that these organisms may act as potential reservoirs of methicillinresistance genetic material to methicillin-sensitive Staphylococcus aureus (MSSA). Mechanisms of horizontal gene transfer from PBP2a-positive CNS to MSSA, potentially transforming MSSA to MRSA, aided by electroporation-type activities such as transcutaneous electrical nerve stimulation (TENS), should be considered. Methicillin-resistant CNS (MR-CNS) isolates are collected over a two-month period from a variety of clinical specimen types, particularly wound swabs. The species of all isolates are confirmed, as well as their resistance to oxacillin by standard disc diffusion assays. In addition, MSSA isolates are collected over the same period and confirmed as PBP2a-negative. Electroporation experiments are designed to mimic the time/voltage combinations used commonly in the clinical application of TENS. No transformed MRSA were isolated and all viable S. aureus cells remained susceptible to oxacillin and PBP2a-negative. Experiments using MSSA pre-exposed to sublethal concentrations of oxacillin (0.25 µg/mL) showed no evidence of methicillin gene transfer and the generation of an MRSA. The study showed no evidence of horizontal transfer of methicillin resistance genetic material from MR-CNS to MSSA. These data support the belief that TENS and the associated time/voltage combinations used do not increase conjugational transposons or facilitate horizontal gene transfer from MR-CNS to MSSA.
Resumo:
Background. The success of transplantation is hampered by rejection of the graft by alloreactive T cells. Donor dendritic cells (DC) have been shown to be required for direct priming of immune responses to antigens from major histocompatibility complex-mismatched grafts. However, for immune responses to major histocompatibility complex-matched, minor histocompatibility (H) antigen mismatched grafts, the magnitude of the T-cell response to directly presented antigens is reduced, and the indirect pathway is more important. Therefore, we aimed to investigate the requirement for donor DC to directly present antigen from minor H antigen mismatched skin and hematopoietic grafts.
Resumo:
Responses evoked in muscle sympathetic nerve activity (MSNA) by systemic hypoxia have received relatively little attention. Moreover, MSNA is generally identified from firing characteristics in fibres supplying whole limbs: their actual destination is not determined. We aimed to address these limitations by using a novel preparation of spinotrapezius muscle in anaesthetised rats. By using focal recording electrodes, multi-unit and discriminated single unit activity were recorded from the surface of arterial vessels. This had cardiac- and respiratory-related activities expected of MSNA, and was increased by baroreceptor unloading, decreased by baroreceptor stimulation and abolished by autonomic ganglion blockade. Progressive, graded hypoxia (breathing sequentially 12, 10, 8% O2 for 2 min each) evoked graded increases in MSNA. In single units, mean firing frequency increased from 0.2 ± 0.04 in 21% O2 to 0.62 ± 0.14 Hz in 8% O2, while instantaneous frequencies ranged from 0.04–6 Hz in 21% O2 to 0.09–20 Hz in 8% O2. Concomitantly, arterial pressure (ABP), fell and heart rate (HR) and respiratory frequency (RF) increased progressively, while spinotrapezius vascular resistance (SVR) decreased (Spinotrapezius blood flow/ABP), indicating muscle vasodilatation. During 8% O2 for 10 min, the falls in ABP and SVR were maintained, but RF, HR and MSNA waned towards baselines from the second to the tenth minute. Thus, we directly show that MSNA increases during systemic hypoxia to an extent that is mainly determined by the increases in peripheral chemoreceptor stimulation and respiratory drive, but its vasoconstrictor effects on muscle vasculature are largely blunted by local dilator influences, despite high instantaneous frequencies in single fibres.
Resumo:
The localisation and distribution of 5-hydroxytryptamine (5-HT, or serotonin) and neuropeptides in the nervous system of the protoscolex of the hydatid organism Echinococcus granulosus were determined by an indirect immunofluorescence technique. Nerve-cell bodies immunoreactive for 5-HT occurred in the lateral ganglia and in association with the lateral longitudinal nerve cords. 5-HT immunostaining was also evident in the central nerve ring, in the rostellar nerves and in the nerve plexus innervating the suckers. Of the antisera used to screen the protoscolex for neuropeptide immunoreactivity (IR), immunostaining was obtained with those raised against pancreatic polypeptide (PP), peptide YY (PYY), substance P (SP), peptide histidine isoleucine (PI-II) and vasoactive intestinal peptide (VIP). The most extensive pattern of IR occurred with antisera to PP and PYY. Immunoreactive nerve elements were evident in the lateral ganglia, central nerve ring, rostellar nerves, rostellar ganglia, sucker plexus and longitudinal nerve cords. The distribution of SP-, PHI- and VIP-IRs was more restricted: SP-IR occurred in the lateral ganglia and sucker nerves, whilst PHI- and VIP-immunoreactive nerve elements were associated with the lateral longitudinal nerve cords. Protoscoleces cultured in vitro for 29 days were also examined and neuroanatomical changes noted. A greater development of the longitudinal nerve cords and their cross-connectives in the body of the worm was evident, and a group of nerve cells were seen to develop at the posterior end of the main lateral nerve cords.
Resumo:
Standard enzyme cytochemical and indirect immunocytochemical techniques have been used in conjunction with light and confocal scanning laser microscopy (CSLM) to visualize cholinergic, serotoninergic and peptidergic nerve elements in whole-mount preparations of the amphibian urinary-bladder fluke, Gorgoderina vitelliloba. Cholinesterase (ChE) activity was localized in paired anterior ganglia, a connecting dorsal commissure and in the origins of the ventral nerve cords. Cholinergic ganglia were also evident in shelled embryos in the uterus. Serotonin-immunoreactivity (IR) was more extensive than ChE activity and was identified in both the central and peripheral nervous systems. Serotoninergic nerve fibres were associated with the somatic musculature and female reproductive ducts. Antisera to nine mammalian peptides and one invertebrate (FMRFamide) peptide have been used to investigate the peptidergic nervous system in the parasite. Immunoreactivity was obtained to five peptides, namely pancreatic polypeptide (PP), peptide YY (PYY), neuropeptide Y (NPY), substance P (SP) and FMRFamide. Peptidergic nerve fibres were found to be more abundant than demonstrable cholinergic or serotoninergic nerve fibres. NPY-IR was identified only in the main components of the central nervous system. However, PP- and PYY-IR occurred in the anterior ganglia, dorsal commissure, main nerve cords and in numerous small varicose fibres that ramified throughout the worm. Additionally, PP-immunoreactive nerve fibres were found to innervate the musculature of the female reproductive tracts. Six sites of IR were found in the acetabulum, using antisera directed towards the C-terminal end of PP and PYY, and these matched with the distribution of six non-ciliated rosette-like papillae observed by scanning electron microscopy. SP- and FMRFamide-IR were identified in the CNS, and FMRFamide-immunopositive nerve fibres were also evident in association with the gonopore/cirrus region and with the terminal excretory pore. Results are discussed with respect to possible roles for each of the neurochemical types.
HYMENOLEPIS-NANA - THE FINE-STRUCTURE OF THE PENETRATION GLAND AND NERVE-CELLS WITHIN THE ONCOSPHERE
Resumo:
The long-term success of arterial bypass grafting with autologous saphenous veins is limited by neointimal hyperplasia (NIH), which seemingly develops preferentially at sites where hydrodynamic wall shear is low. Placement of a loose-fitting, porous stent around end-to-end, or end-to-side, autologous saphenous vein grafts on the porcine common carotid artery has been found significantly to reduce NIH, but the mechanism is unclear. In a preliminary study, we implanted autologous saphenous vein grafts bilaterally on the common carotid arteries of pigs, placing a stent around one graft and leaving the contralateral graft unstented. At sacrifice 1 month post implantation, the grafts were pressure fixed in situ and resin casts were made. Unstented graft geometry was highly irregular, with non-uniform dilatation, substantial axial lengthening, curvature, kinking, and possible long-pitch helical distortion. In contrast, stented grafts showed no major dilatation, lengthening or curvature, but there was commonly fine corrugation, occasional slight kinking or narrowing of segments, and possible long-pitch helical distortion. Axial growth of grafts against effectively tethered anastomoses could account for these changes. CFD studies are planned, using 3D MR reconstructions, on the effects of graft geometry on the flow. Abnormality of the flow could favour the development of vascular pathology, including NIH.
Resumo:
Rationale: Smooth muscle cells (SMCs) are a key component of tissue-engineered vessels. However, the sources by which they can be isolated are limited.
Objective: We hypothesized that a large number of SMCs could be obtained by direct reprogramming of fibroblasts, that is, direct differentiation of specific cell lineages before the cells reaching the pluripotent state.
Methods and Results: We designed a combined protocol of reprogramming and differentiation of human neonatal lung fibroblasts. Four reprogramming factors (OCT4, SOX2, KLF4, and cMYC) were overexpressed in fibroblasts under reprogramming conditions for 4 days with cells defined as partially-induced pluripotent stem (PiPS) cells. PiPS cells did not form tumors in vivo after subcutaneous transplantation in severe combined immunodeficiency mice and differentiated into SMCs when seeded on collagen IV and maintained in differentiation media. PiPS-SMCs expressed a panel of SMC markers at mRNA and protein levels. Furthermore, the gene dickkopf 3 was found to be involved in the mechanism of PiPS-SMC differentiation. It was revealed that dickkopf 3 transcriptionally regulated SM22 by potentiation of Wnt signaling and interaction with Kremen1. Finally, PiPS-SMCs repopulated decellularized vessel grafts and ultimately gave rise to functional tissue-engineered vessels when combined with previously established PiPS-endothelial cells, leading to increased survival of severe combined immunodeficiency mice after transplantation of the vessel as a vascular graft.
Conclusions: We developed a protocol to generate SMCs from PiPS cells through a dickkopf 3 signaling pathway, useful for generating tissue-engineered vessels. These findings provide a new insight into the mechanisms of SMC differentiation with vast therapeutic potential.
Resumo:
Purpose: The authors estimated the retinal nerve fiber layer height (RNFLH) measurements in patients with glaucoma compared with those in age-matched healthy subjects as obtained by the laser scanning tomography and assessed the relationship between RNFLH measurements and optic and visual field status. Methods: Parameters of optic nerve head topography and RNFLH were evaluated in 125 eyes of 21 healthy subjects and 104 patients with glaucoma using the Heidelberg Retina Tomograph ([HRT] Heidelberg Engineering GmbH, Heidelberg, Germany) for the entire disc area and for the superior 70°(50°temporal and 20°nasal to the vertical midline) and inferior 70°sectors of the optic disc. The mean deviation of the visual field, as determined by the Humphrey program 24-2 (Humphrey Instruments, Inc., San Leonardo, CA, U.S.A) was calculated in the entire field and in the superior and inferior Bjerrum area. Result: Retinal nerve fiber layer height parameters (mean RNFLH and RNFL cross-sectional area) were decreased significantly in patients with glaucoma compared with healthy individuals. Retinal nerve fiber layer height parameters was correlated strongly with rim volume, rim area, and cup/disc area ratio. Of the various topography measures, retinal nerve fiber layer (RNFL) parameters and cup/disc area ratio showed the strongest correlation with visual field mean deviation in patients with glaucoma. Conclusion: Retinal nerve fiber layer height measures were reduced substantially in patients with glaucoma compared with age-matched healthy subjects. Retinal nerve fiber layer height was correlated strongly with topographic optic disc parameters and visual field changes in patients with glaucoma.
Resumo:
Objective: Acquired pit-like changes of the optic nerve head (APON) are characteristic of glaucomatous damage and may be a sign of a localized susceptibility of the optic nerve. Thus, it is possible that biomechanical properties of the ocular tissues may play a pressure-independent role in the pathogenesis of glaucoma. Corneal hysteresis (CH) appears to provide information of the biomechanical properties of the ocular hull tissues. The purpose of this study was to compare CH of patients with primary open angle glaucoma (POAG) with and without APON. Methods: A prospective case control study was done. POAG patients with and without APON were measured using the Ocular Response Analyzer by masked investigators. Patients in both groups were matched for sex, age, corneal thickness, and type of glaucoma according to maximal IOP (NTG or POAG). Statistical analysis was done using ANOVA. Results: Corneal hysteresis of 16 glaucomatous eyes with APON and 32 controls (glaucoma without APON) was measured. The mean (±SD) CH in the APON group was 8.89 (±1.53) and 10.2 (±1.05) in the control group. The difference is statistically significant (p = 0.005). Conclusions: Corneal hysteresis in POAG patients with APON was significantly lower than in patients that did not have such structural changes of the optic disc. These findings may reflect pressure-independent mechanisms involved in the pathogenesis of such glaucomatous optic nerve changes. © Springer-Verlag 2007.
Resumo:
This study was designed to carry out the characterization of stem cells within the adventitia and to elucidate their functional role in the pathogenesis of vein graft atherosclerosis.
Resumo:
The purpose of this study was to define pathological abnormalities in the peripheral nerve of a large animal model of long-duration type 1 diabetes and also to determine the effects of treatment with sulindac. Detailed morphometric studies were performed to define nerve fiber and endoneurial capillary pathology in 6 control dogs, 6 type 1 diabetic dogs treated with insulin, and 6 type 1 diabetic dogs treated with insulin and sulindac for 4 years. Myelinated fiber and regenerative cluster density showed a non-significant trend toward a reduction in diabetic compared to control animals, which was prevented by treatment with sulindac. Unmyelinated fiber density did not differ among groups. However, diabetic animals showed a non-significant trend toward an increase in axon diameter (p <0.07), with a shift of the size frequency distribution towards larger axons, which was not prevented by treatment with sulindac. Endoneurial capillary density and luminal area showed a non-significant trend toward an increase in diabetic animals, which was prevented with sulindac treatment. Endoneurial capillary basement membrane area was significantly increased (p <0.05) in diabetic animals, but was not prevented with sulindac treatment. We conclude that the type 1 diabetic dog demonstrates minor structural abnormalities in the nerve fibers and endoneurial capillaries of the sciatic nerve, and treatment with sulindac ameliorates some but not all of these abnormalities.