55 resultados para multivariate data analysis.
Resumo:
The aim of this paper is to equip readers with an understanding of the principles of qualitative data analysis and offer a practical example of how analysis might be undertaken in an interview-based study.
Resumo:
The Irish and UK governments, along with other countries, have made a commitment to limit the concentrations of greenhouse gases in the atmosphere by reducing emissions from the burning of fossil fuels. This can be achieved (in part) through increasing the sequestration of CO2 from the atmosphere including monitoring the amount stored in vegetation and soils. A large proportion of soil carbon is held within peat due to the relatively high carbon density of peat and organic-rich soils. This is particularly important for a country such as Ireland, where some 16% of the land surface is covered by peat. For Northern Ireland, it has been estimated that the total amount of carbon stored in vegetation is 4.4Mt compared to 386Mt stored within peat and soils. As a result it has become increasingly important to measure and monitor changes in stores of carbon in soils. The conservation and restoration of peat covered areas, although ongoing for many years, has become increasingly important. This is summed up in current EU policy outlined by the European Commission (2012) which seeks to assess the relative contributions of the different inputs and outputs of organic carbon and organic matter to and from soil. Results are presented from the EU-funded Tellus Border Soil Carbon Project (2011 to 2013) which aimed to improve current estimates of carbon in soil and peat across Northern Ireland and the bordering counties of the Republic of Ireland.
Historical reports and previous surveys provide baseline data. To monitor change in peat depth and soil organic carbon, these historical data are integrated with more recently acquired airborne geophysical (radiometric) data and ground-based geochemical data generated by two surveys, the Tellus Project (2004-2007: covering Northern Ireland) and the EU-funded Tellus Border project (2011-2013) covering the six bordering counties of the Republic of Ireland, Donegal, Sligo, Leitrim, Cavan, Monaghan and Louth. The concept being applied is that saturated organic-rich soil and peat attenuate gamma-radiation from underlying soils and rocks. This research uses the degree of spatial correlation (coregionalization) between peat depth, soil organic carbon (SOC) and the attenuation of the radiometric signal to update a limited sampling regime of ground-based measurements with remotely acquired data. To comply with the compositional nature of the SOC data (perturbations of loss on ignition [LOI] data), a compositional data analysis approach is investigated. Contemporaneous ground-based measurements allow corroboration for the updated mapped outputs. This provides a methodology that can be used to improve estimates of soil carbon with minimal impact to sensitive habitats (like peat bogs), but with maximum output of data and knowledge.
Resumo:
1) Executive Summary
Legislation (Autism Act NI, 2011), a cross-departmental strategy (Autism Strategy 2013-2020) and a first action plan (2013-2016) have been developed in Northern Ireland in order to support individuals and families affected by Autism Spectrum Disorder (ASD) without a prior thorough baseline assessment of need. At the same time, there are large existing data sets about the population in NI that had never been subjected to a secondary data analysis with regards to data on ASD. This report covers the first comprehensive secondary data analysis and thereby aims to inform future policy and practice.
Following a search of all existing, large-scale, regional or national data sets that were relevant to the lives of individuals and families affected by Autism Spectrum Disorder (ASD) in Northern Ireland, extensive secondary data analyses were carried out. The focus of these secondary data analyses was to distill any ASD related data from larger generic data sets. The findings are reported for each data set and follow a lifespan perspective, i.e., data related to children is reported first before data related to adults.
Key findings:
Autism Prevalence:
Of children born in 2000 in the UK,
• 0.9% (1:109) were reported to have ASD, when they were 5-year old in 2005;
• 1.8% (1:55) were reported to have ASD, when they were 7-years old in 2007;
• 3.5% (1:29) were reported to have ASD, when they were 11-year old in 2011.
In mainstream schools in Northern Ireland
• 1.2% of the children were reported to have ASD in 2006/07;
• 1.8% of the children were reported to have ASD in 2012/13.
Economic Deprivation:
• Families of children with autism (CWA) were 9%-18% worse off per week than families of children not on the autism spectrum (COA).
• Between 2006-2013 deprivation of CWA compared to COA nearly doubled as measured by eligibility for free school meals (from near 20 % to 37%)
• In 2006, CWA and COA experienced similar levels of deprivation (approx. 20%), by 2013, a considerable deprivation gap had developed, with CWA experienced 6% more deprivation than COA.
• Nearly 1/3 of primary school CWA lived in the most deprived areas in Northern Ireland.
• Nearly ½ of children with Asperger’s Syndrome who attended special school lived in the most deprived areas.
Unemployment:
• Mothers of CWA were 6% less likely to be employed than mothers of COA.
• Mothers of CWA earned 35%-56% less than mothers of COA.
• CWA were 9% less likely to live in two income families than COA.
Health:
• Pre-diagnosis, CWA were more likely than COA to have physical health problems, including walking on level ground, speech and language, hearing, eyesight, and asthma.
• Aged 3 years of age CWA experienced poorer emotional and social health than COA, this difference increased significantly by the time they were 7 years of age.
• Mothers of young CWA had lower levels of life satisfaction and poorer mental health than mothers of young COA.
Education:
• In mainstream education, children with ASD aged 11-16 years reported less satisfaction with their social relationships than COA.
• Younger children with ASD (aged 5 and 7 years) were less likely to enjoy school, were bullied more, and were more reluctant to attend school than COA.
• CWA attended school 2-3 weeks less than COA .
• Children with Asperger’s Syndrome in special schools missed the equivalent of 8-13 school days more than children with Asperger’s Syndrome in mainstream schools.
• Children with ASD attending mainstream schooling were less likely to gain 5+ GCSEs A*-C or subsequently attend university.
Further and Higher Education:
• Enrolment rates for students with ASD have risen in Further Education (FE), from 0% to 0.7%.
• Enrolment rates for students with ASD have risen in Higher Education (HE), from 0.28% to 0.45%.
• Students with ASD chose to study different subjects than students without ASD, although other factors, e.g., gender, age etc. may have played a part in subject selection.
• Students with ASD from NI were more likely than students without ASD to choose Northern Irish HE Institutions rather than study outside NI.
Participation in adult life and employment:
• A small number of adults with ASD (n=99) have benefitted from DES employment provision over the past 12 years.
• It is unknown how many adults with ASD have received employment support elsewhere (e.g. Steps to Work).
•
Awareness and Attitudes in the General Population:
• In both the 2003 and 2012 NI Life and Times Survey (NILTS), NI public reported positive attitudes towards the inclusion of children with ASD in mainstream education (see also BASE Project Vol. 2).
Gap Analysis Recommendations:
This was the first comprehensive secondary analysis with regards to ASD of existing large-scale data sets in Northern Ireland. Data gaps were identified and further replications would benefit from the following data inclusion:
• ASD should be recorded routinely in the following datasets:
o Census;
o Northern Ireland Survey of Activity Limitation (NISALD);
o Training for Success/Steps to work; Steps to Success;
o Travel survey;
o Hate crime; and
o Labour Force Survey.
• Data should be collected on the destinations/qualifications of special school leavers.
• NILT Survey autism module should be repeated in 5 years time (2017) (see full report of 1st NILT Survey autism module 2012 in BASE Project Report Volume 2).
• General public attitudes and awareness should be assessed for children and young people, using the Young Life and Times Survey (YLT) and the Kids Life and Times Survey (KLT); (this work is underway, Dillenburger, McKerr, Schubolz, & Lloyd, 2014-2015).
Resumo:
TAP pulse responses are normally analysed using moments, which are integrals of the full TAP pulse response. However, in some cases the entire pulse response may not be recorded due to technical reasons, thereby compromising any data analysis due to moments generated from incomplete pulse responses. The current work discloses the development of a function which mathematically expands the tail of a TAP pulse response, so that the TAP data analysis can be accurately conducted. This newly developed analysis method has been applied to the oxidative dehydrogenation of ethane over Co–Cr–Sn–WOx/α-Al2O3 and Co–Cr–Sn–WOx/α-Al2O3 catalysts as a case study.
Resumo:
Quantile normalization (QN) is a technique for microarray data processing and is the default normalization method in the Robust Multi-array Average (RMA) procedure, which was primarily designed for analysing gene expression data from Affymetrix arrays. Given the abundance of Affymetrix microarrays and the popularity of the RMA method, it is crucially important that the normalization procedure is applied appropriately. In this study we carried out simulation experiments and also analysed real microarray data to investigate the suitability of RMA when it is applied to dataset with different groups of biological samples. From our experiments, we showed that RMA with QN does not preserve the biological signal included in each group, but rather it would mix the signals between the groups. We also showed that the Median Polish method in the summarization step of RMA has similar mixing effect. RMA is one of the most widely used methods in microarray data processing and has been applied to a vast volume of data in biomedical research. The problematic behaviour of this method suggests that previous studies employing RMA could have been misadvised or adversely affected. Therefore we think it is crucially important that the research community recognizes the issue and starts to address it. The two core elements of the RMA method, quantile normalization and Median Polish, both have the undesirable effects of mixing biological signals between different sample groups, which can be detrimental to drawing valid biological conclusions and to any subsequent analyses. Based on the evidence presented here and that in the literature, we recommend exercising caution when using RMA as a method of processing microarray gene expression data, particularly in situations where there are likely to be unknown subgroups of samples.
Resumo:
Unlabelled single- and double-stranded DNA (ssDNA and dsDNA, respectively) has been detected at concentrations =10-9?M by surface-enhanced Raman spectroscopy. Under appropriate conditions the sequences spontaneously adsorbed to the surface of both Ag and Au colloids through their nucleobases; this allowed highly reproducible spectra with good signal-to-noise ratios to be recorded on completely unmodified samples. This eliminated the need to promote absorption by introducing external linkers, such as thiols. The spectra of model ssDNA sequences contained bands of all the bases present and showed systematic changes when the overall base composition was altered. Initial tests also showed that small but reproducible changes could be detected between oligonucleotides with the same bases arranged in a different order. The spectra of five ssDNA sequences that correspond to different strains of the Escherichia coli bacterium were found to be sufficiently composition-dependent so that they could be differentiated without the need for any advanced multivariate data analysis techniques.
Resumo:
In the context of products from certain regions or countries being banned because of an identified or non-identified hazard, proof of geographical origin is essential with regard to feed and food safety issues. Usually, the product labeling of an affected feed lot shows origin, and the paper documentation shows traceability. Incorrect product labeling is common in embargo situations, however, and alternative analytical strategies for controlling feed authenticity are therefore needed. In this study, distillers' dried grains and solubles (DDGS) were chosen as the product on which to base a comparison of analytical strategies aimed at identifying the most appropriate one. Various analytical techniques were investigated for their ability to authenticate DDGS, including spectroscopic and spectrometric techniques combined with multivariate data analysis, as well as proven techniques for authenticating food, such as DNA analysis and stable isotope ratio analysis. An external validation procedure (called the system challenge) was used to analyze sample sets blind and to compare analytical techniques. All the techniques were adapted so as to be applicable to the DDGS matrix. They produced positive results in determining the botanical origin of DDGS (corn vs. wheat), and several of them were able to determine the geographical origin of the DDGS in the sample set. The maintenance and extension of the databanks generated in this study through the analysis of new authentic samples from a single location are essential in order to monitor developments and processing that could affect authentication.
Resumo:
Abstract Honey is a high value food commodity with recognized nutraceutical properties. A primary driver of the value of honey is its floral origin. The feasibility of applying multivariate data analysis to various chemical parameters for the discrimination of honeys was explored. This approach was applied to four authentic honeys with different floral origins (rata, kamahi, clover and manuka) obtained from producers in New Zealand. Results from elemental profiling, stable isotope analysis, metabolomics (UPLC-QToF MS), and NIR, FT-IR, and Raman spectroscopic fingerprinting were analyzed. Orthogonal partial least square discriminant analysis (OPLS-DA) was used to determine which technique or combination of techniques provided the best classification and prediction abilities. Good prediction values were achieved using metabolite data (for all four honeys, Q2 = 0.52; for manuka and clover, Q2 = 0.76) and the trace element/isotopic data (for manuka and clover, Q2 = 0.65), while the other chemical parameters showed promise when combined (for manuka and clover, Q2 = 0.43).
Resumo:
A compositional multivariate approach is used to analyse regional scale soil geochemical data obtained as part of the Tellus Project generated by the Geological Survey Northern Ireland (GSNI). The multi-element total concentration data presented comprise XRF analyses of 6862 rural soil samples collected at 20cm depths on a non-aligned grid at one site per 2 km2. Censored data were imputed using published detection limits. Using these imputed values for 46 elements (including LOI), each soil sample site was assigned to the regional geology map provided by GSNI initially using the dominant lithology for the map polygon. Northern Ireland includes a diversity of geology representing a stratigraphic record from the Mesoproterozoic, up to and including the Palaeogene. However, the advance of ice sheets and their meltwaters over the last 100,000 years has left at least 80% of the bedrock covered by superficial deposits, including glacial till and post-glacial alluvium and peat. The question is to what extent the soil geochemistry reflects the underlying geology or superficial deposits. To address this, the geochemical data were transformed using centered log ratios (clr) to observe the requirements of compositional data analysis and avoid closure issues. Following this, compositional multivariate techniques including compositional Principal Component Analysis (PCA) and minimum/maximum autocorrelation factor (MAF) analysis method were used to determine the influence of underlying geology on the soil geochemistry signature. PCA showed that 72% of the variation was determined by the first four principal components (PC’s) implying “significant” structure in the data. Analysis of variance showed that only 10 PC’s were necessary to classify the soil geochemical data. To consider an improvement over PCA that uses the spatial relationships of the data, a classification based on MAF analysis was undertaken using the first 6 dominant factors. Understanding the relationship between soil geochemistry and superficial deposits is important for environmental monitoring of fragile ecosystems such as peat. To explore whether peat cover could be predicted from the classification, the lithology designation was adapted to include the presence of peat, based on GSNI superficial deposit polygons and linear discriminant analysis (LDA) undertaken. Prediction accuracy for LDA classification improved from 60.98% based on PCA using 10 principal components to 64.73% using MAF based on the 6 most dominant factors. The misclassification of peat may reflect degradation of peat covered areas since the creation of superficial deposit classification. Further work will examine the influence of underlying lithologies on elemental concentrations in peat composition and the effect of this in classification analysis.