77 resultados para mesenchymal stem cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Human bone marrow-derived mesenchymal stem (stromal) cells (hMSCs) improve survival in mouse models of acute respiratory distress syndrome (ARDS) and reduce pulmonary oedema in a perfused human lung preparation injured with Escherichia coli bacteria. We hypothesised that clinical grade hMSCs would reduce the severity of acute lung injury (ALI) and would be safe in a sheep model of ARDS.

Methods Adult sheep (30–40 kg) were surgically prepared. After 5 days of recovery, ALI was induced with cotton smoke insufflation, followed by instillation of live Pseudomonas aeruginosa (2.5×1011 CFU) into both lungs under isoflurane anaesthesia. Following the injury, sheep were ventilated, resuscitated with lactated Ringer's solution and studied for 24 h. The sheep were randomly allocated to receive one of the following treatments intravenously over 1 h in one of the following groups: (1) control, PlasmaLyte A, n=8; (2) lower dose hMSCs, 5×106 hMSCs/kg, n=7; and (3) higher-dose hMSCs, 10×106 hMSCs/kg, n=4.

Results By 24 h, the PaO2/FiO2 ratio was significantly improved in both hMSC treatment groups compared with the control group (control group: PaO2/FiO2 of 97±15 mm Hg; lower dose: 288±55 mm Hg (p=0.003); higher dose: 327±2 mm Hg (p=0.003)). The median lung water content was lower in the higher-dose hMSC-treated group compared with the control group (higher dose: 5.0 g wet/g dry [IQR 4.9–5.8] vs control: 6.7 g wet/g dry [IQR 6.4–7.5] (p=0.01)). The hMSCs had no adverse effects.

Conclusions Human MSCs were well tolerated and improved oxygenation and decreased pulmonary oedema in a sheep model of severe ARDS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in pre-clinical models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the anti-microbial effect of MSC in vivo depends on their modulation of macrophage phagocytic activity which occurs through mitochondrial transfer. We established that selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposomal clodronate resulted in complete abrogation of MSC anti-microbial effect in the in vivo model of E.coli pneumonia. Furthermore, we showed that MSC administration was associated with enhanced AM phagocytosis in vivo. We showed that direct co-culture of MSC with monocyte-derived macrophages (MDMs) enhanced their phagocytic capacity. By fluorescent imaging and flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages which occurred at least partially through TNT-like structures. We also detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally, partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on macrophage phagocytosis in vitro and the anti-microbial effect of MSC in vivo.

Collectively, this work for the first time demonstrates that mitochondrial transfer from MSC to innate immune cells leads to enhancement in phagocytic activity and reveals an important novel mechanism for the anti-microbial effect of MSC in ARDS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy. The surface morphology and composition were studied by scanning electron microscope (SEM) and X-ray photoemission spectroscopy (XPS), respectively. The cell morphology was examined by SEM while the cell counting and viability measurements were done by haemocytometer and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The results indicated that the laser-induced surface features, such as surface roughening, presence of anisotropic dendritic pattern and complete surface Ni oxidation were beneficial to improve the biocompatibility of NiTi as evidenced by the highest cell attachment (4 days of culture) and viability (7 days of culture) found in the MZ. The biocompatibility of the MZ was the best, followed by the BM with the HAZ being the worst. The defective and porous oxide layer as well as the coarse grained structure might attribute to the inferior cell attachment (4 days of culture) and viability (7 days of culture) on the HAZ compared with the BM which has similar surface morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are known to play important roles in development, post-natal growth, repair, and regeneration of mesenchymal tissues. What is more, surface treatments are widely reported to affect the biomimetic nature of materials. This paper will detail, discuss and compare laser surface treatment of polyamide (Polyamide 6,6), using a 60 W CO2 laser, and NiTi alloy, using a 100 W fiber laser, and the effects of these treatments on mesenchymal stem cell response. The surface morphology and composition of the polyamide and NiTi alloy were studied by scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS), respectively. MSC cell morphology cell counting and viability measurements were done by employing a haemocytometer and MTT colorimetric assay. The success of enhanced adhesion and spreading of the MSCs on each of the laser surface treated samples, when compared to as-received samples, is evidenced in this work. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peripheral blood-derived multi-potent mesenchymal stromal cells circulate in low number. They share, though not all, but most of the surface markers with bone marrow-derived multi-potent mesenchymal stromal cells, possess diverse and complicated gene expression characteristics, and are capable of differentiating along and even beyond mesenchymal lineages. Although their origin and physio-pathological function are still unclear, their presence in the adult peripheral blood might relate to some interesting but controversial subjects in the filed of adult stem cell biology, such as systemic migration of bone marrow-derived multi-potent mesenchymal stromal cells and the existence of common hematopoietic-mesenchymal precursors. In this review, current studies/knowledge about peripheral blood-derived multi-potent mesenchymal stromal cells is summarized and the above-mentioned topics are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biocompatibility of NiTi after laser welding was studied by examining the in vitro (mesenchymal stem cell) MSC responses at different sets of time varying from early (4 to 12 h) to intermediate phases (1 and 4 days) of cell culture. The effects of physical (surface roughness and topography) and chemical (surface Ti/Ni ratio) changes as a consequence of laser welding in different regions (WZ, HAZ, and BM) on the cell morphology and cell coverage were studied. The results in this research indicated that the morphology of MSCs was affected primarily by the topographical factors in the WZ: the well-defined and directional dendritic pattern and the presence of deeper grooves. The morphology of MSCs was not significantly modulated by surface roughness. Despite the possible initial Ni release in the medium during the cell culture, no toxic effect seemed to cause to MSCs as evidenced by the success of adhesion and spreading of the cells onto different regions in the laser weldment. The good biocompatibility of the NiTi laser weldment has been firstly reported in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, there has been growing evidence for the involvement of stem cells in cancer initiation. As a result of their long life span, stem cells may have an increased propensity to accumulate genetic damage relative to differentiated cells. Therefore, stem cells of normal tissues may be important targets for radiation-induced carcinogenesis.

Knowledge of the effects of ionizing radiation (IR) on normal stem cells and on the processes involved in carcinogenesis is very limited. The influence of high doses of IR (>5 Gy) on proliferation, cell cycle and induction of senescence has been demonstrated in stem cells. There have been limited studies of the effects of moderate (0.5–5 Gy) and low doses (<0.5 Gy) of IR on stem cells however, the effect of low dose IR (LD-IR) on normal stem cells as possible targets for radiation-induced carcinogenesis has not been studied in any depth. There may also be important parallels between stem cell responses and those of cancer stem cells, which may highlight potential key common mechanisms of their response and radiosensitivity.

This review will provide an overview of the current knowledge of radiation-induced effects on normal stem cells, with particular focus on low and moderate doses of IR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesise that following a bone fracture there is systemic recruitment of bone forming cells to a fracture site. A rabbit ulnar osteotomy model was adapted to trace the movement of osteogenic cells. Bone marrow mesenchymal stem cells from 41 NZW rabbits were isolated, culture-expanded and fluorescently labelled. The labelled cells were either re-implanted into the fracture gap (Group A); into a vein (Group B); or into a remote tibial bone marrow cavity 48 h after the osteotomy (Group C) or 4 weeks before the osteotomy was established (Group D), and a control group (Group E) had no labelled cells given. To quantify passive leakage of cells to an injury site, inert beads were also co-delivered in Group B. Samples of the fracture callus tissue and various organs were harvested at discrete sacrifice time-points to trace and quantify the labelled cells. At 3 weeks following osteotomy, the number of labelled cells identified in the callus of Group C, was significantly greater than following IV delivery, Group B, and there was no difference in the number of labelled cells in the callus tissues, between Groups C and A, indicating the labelled bone marrow cells were capable of migrating to the fracture sites from the remote bone marrow cavity. Significantly fewer inert beads than labelled cells were identified in Group B callus, suggesting some of the bone-forming cells were actively recruited and selectively chosen to the fracture site, rather than passively leaked into the circulation and to bone injury site. This investigation supports the hypothesis that some osteoblasts involved in fracture healing were systemically mobilised and recruited to the fracture from remote bone marrow sites. © 2005 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Retinal progenitor cells (RPCs) and retinal stem cells (RSCs) from rodents and humans have been isolated and characterized in vitro. Transplantation experiments have confirmed their potential as tools for cell replacement in retinal degenerative diseases. The pig represents an ideal pre-clinical animal model to study the impact of transplantation because of the similarity of its eye to the human eye. However, little is known about porcine RPCs and RSCs. We aimed to identify and characterize in vitro RPCs and RSCs from porcine ocular tissues. Methods: Cells from different subregions of embryonic, postnatal and adult porcine eyes were grown in suspension sphere culture in serum-free medium containing basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Growth curves and BrdU incorporation assays were performed to establish the proliferative capacity of isolated porcine retina-derived RPCs and ciliary epithelium (CE)-derived RSCs. Self-renewal potential was investigated by subsphere formation assays. Changes in gene expression were assayed by reverse transcription polymerase chain reaction (RT-PCR) at different passages in culture. Finally, differentiation was induced by addition of serum to the cultures and expression of markers for retinal cell types was detected by immunohistochemical staining with specific antibodies. Results: Dissociated cells from embryonic retina and CE at different postnatal ages generated primary nestin- and Pax6-immunoreactive neurosphere colonies in vitro in numbers that decreased with age. Embryonic and postnatal retina-derived RPCs and young CE-derived RSCs displayed self-renewal capacity, generating secondary neurosphere colonies. However, their self-renewal and proliferation capacity gradually decreased and they became more committed to differentiated states with subsequent passages. The expansion capacity of RPCs and RSCs was higher when they were maintained in monolayer culture. Porcine RPCs and RSCs could be induced to differentiate in vitro to express markers of retinal neurons and glia. Conclusions: Porcine retina and CE contain RPCs and RSCs which are undifferentiated, self-renewing and multipotent and which show characteristics similar to their human counterparts. Therefore, the pig could be a useful source of cells to further investigate the cell biology of RPCs and RSCs and it could be used as a non-primate large animal model for pre-clinical studies on stem cell-based approaches to regenerative medicine in the retina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AIMS: Cell-based gene therapy is an alternative to viral and non-viral gene therapy. Emerging evidence suggests that mesenchymal stem cells (MSC) are able to migrate to sites of tissue injury and have immunosuppressive properties that may be useful in targeted gene therapy for sustained specific tissue engraftment. METHODS: In this study, we injected intravenously (i.v.) 1x10(6) MSC, isolated from green fluorescent protein (GFP) transgenic rats, into Rif-1 fibrosarcoma-bearing C3H/HeN mice. The MSC had been infected using a lentiviral vector to express stably the luciferase reporter gene (MSC-GFP-luci). An in vivo imaging system (IVIS 200) and Western blotting techniques were used to detect the distribution of MSC-GFP-luci in tumor-bearing animals. RESULTS: We observed that xenogenic MSC selectively migrated to the tumor site, proliferated and expressed the exogenous gene in subcutaneous fibrosarcoma transplants. No MSC distribution was detected in other organs, such as the liver, spleen, colon and kidney. We further showed that the FGF2/FGFR pathways may play a role in the directional movement of MSC to the Rif-1 fibrosarcoma. We performed in vitro co-culture and in vivo tumor growth analysis, showing that MSC did not affect the proliferation of Rif-1 cells and fibrosarcoma growth compared with an untreated control group. Finally, we demonstrated that the xenogenic MSC stably expressing inducible nitric oxide synthase (iNOS) protein transferred by a lentivirus-based system had a significant inhibitory effect on the growth of Rif-1 tumors compared with MSC alone and the non-treatment control group. CONCLUSIONS: iNOS delivered by genetically modified iNOS-MSC showed a significant anti-tumor effect both in vitro and in vivo. MSC may be used as a target gene delivery vehicle for the treatment of fibrosarcoma and other tumors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adult neural stem cells (aNSCs) derived from the subventricular zone of the brain show therapeutic effects in EAE, an animal model of the chronic inflammatory neurodegenerative disease MS; however, the beneficial effects are modest. One critical weakness of aNSC therapy may be an insufficient antiinflammatory effect. Here, we demonstrate that i.v. or i.c.v. injection of aNSCs engineered to secrete IL-10 (IL-10–aNSCs), a potent immunoregulatory cytokine, induced more profound functional and pathological recovery from ongoing EAE than that with control aNSCs. IL-10–aNSCs exhibited enhanced antiinflammatory effects in the periphery and inflammatory foci in the CNS compared with control aNSCs, more effectively reducing myelin damage, a hallmark of MS. When compared with mice treated with control aNSCs, those treated with IL-10–aNSCs demonstrated differentiation of transplanted cells into greater numbers of oligodendrocytes and neurons but fewer astrocytes, thus enhancing exogenous remyelination and neuron/axonal growth. Finally, IL-10–aNSCs converted a hostile environment to one supportive of neurons/oligodendrocytes, thereby promoting endogenous remyelination. Thus, aNSCs engineered to express IL-10 show enhanced ability to induce immune suppression, remyelination, and neuronal repair and may represent a novel approach that can substantially improve the efficacy of neural stem cell–based therapy in EAE/MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian nervous system exerts essential control on many physiological processes in the organism and is itself controlled extensively by a variety of genetic regulatory mechanisms. microRNA (miR), an abundant class of small non-coding RNA, are emerging as important post-transcriptional regulators of gene expression in the brain. Increasing evidence indicates that miR regulate both the development and function of the nervous system. Moreover, deficiency in miR function has also been implicated in a number of neurological disorders. Expression profile analysis of miR is necessary to understand their complex role in the regulation of gene expression during the development and differentiation of cells. Here we present a comparative study of miR expression profiles in neuroblastoma, in cortical development, and in neuronal differentiation of embryonic stem (ES) cells. By microarray profiling in combination with real time PCR we show that miR-7 and miR-214 are modulated in neuronal differentiation (as compared to miR-1, -16 and -133a), and control neurite outgrowth in vitro. These findings provide an important step toward further elucidation of miR function and miR-related gene regulatory networks in the mammalian central nervous system. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal ischaemic disorders such as diabetic retinopathy and retinal vein occlusion are common. The hypoxia-related stimuli from oxygen-deprived neural and glial networks can drive expression of growth factors and cytokines which induce leakage from the surviving vasculature and/or pre-retinal and papillary neovascularisation. If left untreated, retinal vascular stasis, hypoxia or ischaemia can lead to macular oedema or fibro-vascular scar formation which are associated with severe visual impairment, and even blindness. Current therapies for ischaemic retinopathies include laser photocoagulation, injection of corticosteroids or VEGF-antibodies and vitreoretinal surgery, however they carry significant side effects. As an alternative approach, we propose that if reparative intra-retinal angiogenesis can be harnessed at the appropriate stage, ischaemia could be contained or reversed. This review provides evidence that reperfusion of ischaemic retina and suppression of sight-threatening sequelae is possible in both experimental and clinical settings. In particular, there is emphasis on the clinical potential for endothelial progenitor cells (EPCs) to promote vascular repair and reversal of ischaemic injury in various tissues including retina. Gathering evidence from an extensive published literature, we outline the molecular and phenotypic nature of EPCs, how they are altered in disease and provide a rationale for harnessing the vascular reparative properties of various cell sub-types. When some of the remaining questions surrounding the clinical use of EPCs are addressed, they may provide an exciting new therapeutic option for treating ischaemic retinopathies. (C) 2011 Elsevier Ltd. All rights reserved.