18 resultados para mass-transport deposits


Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of optimal control techniques we model and optimize the manipulation of the external quantum state (center-of-mass motion) of atoms trapped in adjustable optical potentials. We consider in detail the cases of both noninteracting and interacting atoms moving between neighboring sites in a lattice of a double-well optical potentials. Such a lattice can perform interaction-mediated entanglement of atom pairs and can realize two-qubit quantum gates. The optimized control sequences for the optical potential allow transport faster and with significantly larger fidelity than is possible with processes based on adiabatic transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explosions of sub-Chandrasekhar-mass white dwarfs (WDs) are one alternative to the standard Chandrasekhar-mass model of Type Ia supernovae (SNe Ia). They are interesting since binary systems with sub-Chandrasekhar-mass primary WDs should be common and this scenario would suggest a simple physical parameter which determines the explosion brightness, namely the mass of the exploding WD. Here we perform one-dimensional hydrodynamical simulations, associated post-processing nucleosynthesis, and multi-wavelength radiation transport calculations for pure detonations of carbon-oxygen WDs. The light curves and spectra we obtain from these simulations are in good agreement with observed properties of SNe Ia. In particular, for WD masses from 0.97 to 1.15 Msun we obtain 56Ni masses between 0.3 and 0.8 Msun, sufficient to capture almost the complete range of SN Ia brightnesses. Our optical light curve rise times, peak colors, and decline timescales display trends which are generally consistent with observed characteristics although the range of B-band decline timescales displayed by our current set of models is somewhat too narrow. In agreement with observations, the maximum light spectra of the models show clear features associated with intermediate-mass elements and reproduce the sense of the observed correlation between explosion luminosity and the ratio of the Si II lines at ?6355 and ?5972. We therefore suggest that sub-Chandrasekhar-mass explosions are a viable model for SNe Ia for any binary evolution scenario leading to explosions in which the optical display is dominated by the material produced in a detonation of the primary WD. © 2010. The American Astronomical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hundsalm ice cave located at 1520 m altitude in a karst region of western Austria contains up to 7-m-thick deposits of snow, firn and congelation ice. Wood fragments exposed in the lower parts of an ice and firn wall were radiocarbon accelerator mass spectrometry (AMS) dated. Although the local stratigraphy is complex, the 19 individual dates - the largest currently available radiocarbon dataset for an Alpine ice cave - allow to place constraints on the accumulation and ablation history of the cave ice. Most of the cave was either ice free or contained only a small firn and ice body during the 'Roman Warm Period'; dates of three wood fragments mark the onset of firn and ice build-up in the 6th and 7th century ad. In the central part of the cave, the oldest samples date back to the 13th century and record ice growth coeval with the onset of the 'Little Ice Age'. The majority of the ice and firn deposit, albeit compromised by a disturbed stratigraphy, appears to have been formed during the subsequent centuries, supported by wood samples from the 15th to the 17th century. The oldest wood remains found so far inside the ice is from the end of the Bronze Age and implies that local relics of prehistoric ice may be preserved in this cave. The wood record from Hundsalm ice cave shows parallels to the Alpine glacier history of the last three millennia, for example, the lack of preserved wood remains during periods of known glacier minima, and underscores the potential of firn and ice in karst cavities as a long-term palaeoclimate archive, which has been degrading at an alarming rate in recent years. © The Author(s) 2013.