33 resultados para management control systems
Resumo:
In this short paper, we present an integrated approach to detecting and mitigating cyber-attacks to modern interconnected industrial control systems. One of the primary goals of this approach is that it is cost effective, and thus whenever possible it builds on open-source security technologies and open standards, which are complemented with novel security solutions that address the specific challenges of securing critical infrastructures.
Resumo:
Objective:
The aim of this study was to identify sources of anatomical misrepresentation due to the location of camera mounting, tumour motion velocity and image processing artefacts in order to optimise the 4DCT scan protocol and improve geometrical-temporal accuracy.
Methods:A phantom with an imaging insert was driven with a sinusoidal superior-inferior motion of varying amplitude and period for 4DCT scanning. The length of a high density cube within the insert was measured using treatment planning software to determine the accuracy of its spatial representation. Scan parameters were varied including the tube rotation period and the cine time between reconstructed images. A CT image quality phantom was used to measure various image quality signatures under the scan parameters tested.
Results:No significant difference in spatial accuracy was found for 4DCT scans carried out using the wall mounted or couch mounted camera for sinusoidal target motion. Greater spatial accuracy was found for 4DCT scans carried out using a tube rotation speed of 0.5s rather than 1.0s. The reduction in image quality when using a faster rotation speed was not enough to require an increase in patient dose.
Conclusions:4DCT accuracy may be increased by optimising scan parameters, including choosing faster tube rotation speeds. Peak misidentification in the recorded breathing trace leads to spatial artefacts and this risk can be reduced by using a couch mounted infrared camera.
Advances in knowledge:This study explicitly shows that 4DCT scan accuracy is improved by scanning with a faster CT tube rotation speed.
Resumo:
Management control in public university hospitals is a challenging task because of continuous changes due to external pressures (e.g. economic pressures, stakeholder focuses and scientific progress) and internal complexities (top management turnover, shared leadership, technological evolution, and researcher oriented mission). Interactive budgeting contributed to improving vertical and horizontal communication between hospital and stakeholders and between different organizational levels. This paper describes an application of Analytic Hierarchy Process (AHP) to enhance interactive budgeting in one of the biggest public university hospital in Italy. AHP improved budget allocation facilitating elicitation and formalization of units' needs. Furthermore, AHP facilitated vertical communication among manager and stakeholders, as it allowed multilevel hierarchical representation of hospital needs, and horizontal communication among staff of the same hospital, as it allowed units' need prioritization and standardization, with a scientific multi-criteria approach, without using complex mathematics. Finally, AHP allowed traceability of a complex decision making processes (as budget allocation), this aspect being of paramount importance in public sectors, where managers are called to respond to many different stakeholders about their choices.
Resumo:
Purpose: The purpose of this paper is to investigate the mechanisms adopted by cities to control the provision of externalized public services and to explore the determinants of such control choices.
Design/methodology/approach: The paper presents the results of a multiple case study based on the experiences of three cities and three public services (transport, solid waste collection and home care services for the elderly), where control mechanisms and their possible antecedents were analyzed.
Findings: The results show that the control models found in the cases analyzed do not correspond to the "pure" patterns described in the private sector literature and that the factors identified by management control contributions do not seem to be exhaustive in explaining the configuration of control systems in the public sector. While environmental and task characteristics only partially explain the adoption of certain configurations of control, the features of the control systems seem to be rather influenced by variables that are related to party characteristics.
Originality/value: The paper shows that the combinations of control mechanisms are more multifaceted than those presented in the literature, and that the factors identified in the private sector literature do not seem to explain comprehensively the configuration of control systems in the public sector. © Emerald Group Publishing Limited.
Resumo:
In Italy, standards for the management of free-roaming dogs (FRDs) are defined by regional norms, generating a high variability of approaches around the country. Despite efforts carried out by the competent authorities, FRDs are still a reality impacting upon animal health and welfare and public costs. A similar scenario can be found in many other Mediterranean and Balkan counties. Here we present 14 years of data (2000–2013) retrieved from the admission dog registry of a public shelter (PS) responsible for the collection of stray dogs from one Italian province. The aim of this retrospective study was to describe the local FRD population, identifying its source and to evaluate the effectiveness of the actions implemented by the local authorities. In the investigated period, 7,475 dogs were admitted to the PS. Despite the intense sterilisation plan (mean 381.7 sterilisations per year), the overall number of dogs entering PS did not decrease consistently across the years. Results highlighted a lack of responsibility of owners by failing to sterilise and identify their dogs and allowing intact animals to roam free, therefore producing uncontrolled and unwanted litters. The current dog population management strategy, based on both sheltering and capture-neuter-release programmes, is insufficient to tackle the straying phenomenon. Educational and sterilisation programmes should be an integral part of a successfully implemented FRD control plan. Our results provide further insight on free-roaming dog population dynamics and control systems, and may have important implications for many other local contexts across Europe trying to overcome the straying phenomenon.
Resumo:
This paper provides an overview of the current field in wireless networks for monitoring and control. Alternative wireless technologies are introduced, together with current typical industrial applications. The focus then shifts to wireless Ethernet and the specialised requirements for wireless networked control systems (WNCS) are discussed. This is followed by a brief look at some current WNCS research, including reduced communication control.
Resumo:
Over recent years, a number of marine autopilots designed using linear techniques have underperformed owing to their inability to cope with nonlinear vessel dynamics. To this end, a new design framework for the development of nonlinear autopilots is proposed herein. Local control networks (LCNs) can be used in the design of nonlinear control systems. In this paper, a LCN approach is taken in the design of a nonlinear autopilot for controlling the nonlinear yaw dynamics of an unmanned surface vehicle known as Springer. It is considered the approach is the first of its kind to be used in marine control systems design. Simulation results are presented and the performance of the nonlinear autopilot is compared with that of an existing Springer linear quadratic Gaussian (LQG) autopilot using standard system performance criteria. From the results it can be concluded the LCN autopilot out performed that based on LQG techniques in terms of the selected criteria. Also it provided more energy saving control strategies and would thereby increase operational duration times for the vehicle during real-time missions.
Resumo:
This brief investigates a possible application of the inverse Preisach model in combination with the feedforward and feedback control strategies to control shape memory alloy actuators. In the feedforward control design, a fuzzy-based inverse Preisach model is used to compensate for the hysteresis nonlinearity effect. An extrema input history and a fuzzy inference is utilized to replace the inverse classical Preisach model. This work allows for a reduction in the number of experimental parameters and computation time for the inversion of the classical Preisach model. A proportional-integral-derivative (PID) controller is used as a feedback controller to regulate the error between the desired output and the system output. To demonstrate the effectiveness of the proposed controller, real-time control experiment results are presented.
Resumo:
This paper presents a new methodology for solving the multi-vehicle formation control problem. It employs a unique extension-decomposition-aggregation scheme to transform the overall complex formation control problem into a group of subproblems, which work via boundary interactions or disturbances. Thus, it is proved that the overall formation system is exponentially stable in the sense of Lyapunov, if all the individual augmented subsystems (IASs) are stable. Linear matrix inequality-based H8 control methodology is employed to design the decentralized formation controllers to reject the impact of the formation changes being treated as boundary disturbances and guarantee the stability of all the IASs, consequently maintaining the stability of the overall formation system. Simulation studies are performed to verify the stability, performance, and effectiveness of the proposed strategy.
Resumo:
This paper studies the system modelling and control aspects of switched reluctance generator (SRG) based variable speed wind turbines. A control system is implemented to provide proper operation of the SRG as well as power tracking capabilities for varying wind speeds. The control system for the grid side inverter that will allow the SRG to properly generate power to the system is also presented. Studies are presented of both the SRG and inverter control systems capabilities during a balanced three-phase fault. The paper will demonstrate that the SRG based wind turbine presents a feasible variable wind speed solution with good fault response capabilities.
Resumo:
Physical Access Control Systems are commonly used to secure doors in buildings such as airports, hospitals, government buildings and offices. These systems are designed primarily to provide an authentication mechanism, but they also log each door access as a transaction in a database. Unsupervised learning techniques can be used to detect inconsistencies or anomalies in the mobility data, such as a cloned or forged Access Badge, or unusual behaviour by staff members. In this paper, we present an overview of our method of inferring directed graphs to represent a physical building network and the flows of mobility within it. We demonstrate how the graphs can be used for Visual Data Exploration, and outline how to apply algorithms based on Information Theory to the graph data in order to detect inconsistent or abnormal behaviour.
Resumo:
Melt viscosity is one of the main factors affecting product quality in extrusion processes particularly with regard to recycled polymers. However, due to wide variability in the physical properties of recycled feedstock, it is difficult to maintain the melt viscosity during extrusion of polymer blends and obtain good quality product without generating scrap. This research investigates the application of ultrasound and temperature control in an automatic extruder controller, which has ability to maintain constant melt viscosity from variable recycled polymer feedstock during extrusion processing. An ultrasonic modulation system has been developed and fitted to the extruder prior to the die to convey ultrasonic energy from a high power ultrasonic generator to the polymer melt. Two separate control loops have been developed to run simultaneously in one controller: the first loop controls the ultrasonic energy or temperature to maintain constant die pressure, the second loop is used to control extruder screw speed to maintain constant throughput at the extruder die. Time response and energy consumption of the control methods in real-time experiments are also investigated and reported this paper.