114 resultados para load chains
Resumo:
Long-term consumption of a high glycaemic index (GI) or glycaemic load (GL) diet may lead to chronic hyperinsulinaemia, which is a potential risk factor for cancer. To date, many studies have examined the association between GI, GL and cancer risk, although results have been inconsistent, therefore our objective was to conduct a systematic review of the literature. Medline and Embase were systematically searched using terms for GI, GL and cancer to identify studies published before December 2007. Random effects meta-analyses were performed for endometrial cancer, combining maximally adjusted results that compared risk for those in the highest versus the lowest category of intake. Separate analysis examined risk by body mass index categories. Five studies examining GI and/or GL intake and endometrial cancer risk were identified. Pooled effect estimates for endometrial cancer showed an increased risk for high GL consumers (RR 1.20; 95% CI: 1.06-1.37), further elevated in obese women (RR 1.54; 95% CI: 1.18-2.03). No significant associations were observed for GI. Only two studies examined ovarian cancer and therefore no meta-analysis was performed, but results indicate positive associations for GL also. A high GL, but not a high GI, diet is positively associated with the risk of endometrial cancer, particularly among obese women. © 2008 Cancer Research UK All rights reserved.
Resumo:
This systematic review aimed to examine if an association exists between dietary glycaemic index (GI) and glycaemic load (GL) intake and breast cancer risk. A systematic search was conducted in Medline and Embase and identified 14 relevant studies up to May 2008. Adjusted relative risk estimates comparing breast cancer risk for the highest versus the lowest category of GI/GL intake were extracted from relevant studies and combined in meta-analyses using a random-effects model. Combined estimates from six cohort studies show non-significant increased breast cancer risks for premenopausal women (relative risk (RR) 1.14, 95% CI 0.95-1.38) and postmenopausal women (RR 1.11, 95% CI 0.99-1.25) consuming the highest versus the lowest category of GI intake. Evidence of heterogeneity hindered analyses of GL and premenopausal risk, although most studies did not observe any significant association. Pooled cohort study results indicated no association between postmenopausal risk and GL intake (RR 1.03, 95% CI 0.94-1.12). Our findings do not provide strong support of an association between dietary GI and GL and breast cancer risk. © 2008 Cancer Research UK.
--------------------------------------------------------------------------------
Reaxys Database Information|
Resumo:
Background: Habitual consumption of diets with a high glycemic index (GI) and a high glycemic load (GL) may influence cancer risk via hyperinsulinemia and the insulin-like growth factor axis.
Objective: The objective was to conduct a systematic review to assess the association between GI, GL, and risk of digestive tract cancers.
Design: Medline and Embase were searched for relevant publications from inception to July 2008. When possible, adjusted results from a comparison of cancer risk of the highest compared with the lowest category of GI and GL intake were combined by using random-effects meta-analyses.
Results: Cohort and case-control studies that examined the risk between GI or GL intake and colorectal cancer (n = 12) and adenomas (n = 2), pancreatic cancer (n = 6), gastric cancer (n = 2), and squamous-cell esophageal carcinoma (n = 1) were retrieved. Most case-control studies observed positive associations between GI and GL intake and these cancers. However, pooled cohort study results showed no associations between colorectal cancer risk and GI intake [relative risk (RR): 1.04; 95% CI: 0.92, 1.12; n = 7 studies] or GL intake (RR: 1.06; 95% CI: 0.95, 1.17; n = 8 studies). Furthermore, no significant associations were observed in meta-analyses of cohort study results of colorectal cancer subsites and GI and GL intake. Similarly, no significant associations emerged between pancreatic cancer risk and GI intake (RR: 0.99; 95% CI: 0.83, 1.19; n = 5 studies) or GL intake (RR: 1.01; 95% CI: 0.86, 1.19; n = 6 studies) in combined cohort studies.
Conclusions: The findings from our meta-analyses indicate that GI and GL intakes are not associated with risk of colorectal or pancreatic cancers. There were insufficient data available regarding other digestive tract cancers to make any conclusions about GI or GL intake and risk.
Resumo:
Annotation of programs using embedded Domain-Specific Languages (embedded DSLs), such as the program annotation facility for the Java programming language, is a well-known practice in computer science. In this paper we argue for and propose a specialized approach for the usage of embedded Domain-Specific Modelling Languages (embedded DSMLs) in Model-Driven Engineering (MDE) processes that in particular supports automated many-step model transformation chains. It can happen that information defined at some point, using an embedded DSML, is not required in the next immediate transformation step, but in a later one. We propose a new approach of model annotation enabling flexible many-step transformation chains. The approach utilizes a combination of embedded DSMLs, trace models and a megamodel. We demonstrate our approach based on an example MDE process and an industrial case study.
Resumo:
The alkali-metal salts of meta-substituted benzoic acids exhibit a smectic A mesophase at high temperatures. These compounds are examples of liquid crystals without terminal alkyl chains. The influence of the metal ion and of the type of substituents on the transition temperatures is discussed. Compounds with the substituent in the ortho- and para-positions are non-mesomorphic. The crystal structures of the compounds Rb(C7H4ClO2)(C7H4ClO2H), Na(C7H4IO2)(H2O), K(C7H4ClO2)(C7H4ClO2H) and Rb(C7H4BrO2)(C7H4BrO2H) have been determined by X-ray crystallography. These compounds possess a layerlike structure in the solid state. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)