61 resultados para liquid metal diffusion
Resumo:
We present a study on the transport properties through conductivity (s), viscosity (?), and self-diffusion coefficient (D) measurements of two pure protic ionic liquids—pyrrolidinium hydrogen sulfate, [Pyrr][HSO4], and pyrrolidinium trifluoroacetate, [Pyrr][CF3COO]—and their mixtures with water over the whole composition range at 298.15 K and atmospheric pressure. Based on these experimental results, transport mobilities of ions have been then investigated in each case through the Stokes–Einstein equation. From this, the proton conduction in these PILs follows a combination of Grotthuss and vehicle-type mechanisms, which depends also on the water composition in solution. In each case, the displacement of the NMR peak attributed to the labile proton on the pyrrolidinium cation with the PILs concentration in aqueous solution indicates that this proton is located between the cation and the anion for a water weight fraction lower than 8%. In other words, for such compositions, it appears that this labile proton is not solvated by water molecules. However, for higher water content, the labile protons are in solution as H3O+. This water weight fraction appears to be the solvation limit of the H+ ions by water molecules in these two PILs solutions. However, [Pyrr][HSO4] and [Pyrr][CF3COO] PILs present opposed comportment in aqueous solution. In the case of [Pyrr][CF3COO], ?, s, D, and the attractive potential, Epot, between ions indicate clearly that the diffusion of each ion is similar. In other words, these ions are tightly bound together as ion pairs, reflecting in fact the importance of the hydrophobicity of the trifluoroacetate anion, whereas, in the case of the [Pyrr][HSO4], the strong H-bond between the HSO4– anion and water promotes a drastic change in the viscosity of the aqueous solution, as well as on the conductivity which is up to 187 mS·cm–1 for water weight fraction close to 60% at 298 K.
Resumo:
Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (MNPs) have been reproducibly obtained by facile, rapid (3 min), and energysaving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal–carbonyl precursors [Mx(CO)y] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180–2508C, 6–12 h) of [Mx(CO)y] in ILs. The MWIobtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active
and easily recyclable catalysts for the biphasic liquid–liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product)(mol Ru)1h1 and 884 (mol product)(molRh)1h1 and give almost quantitative conversion within 2 h at 10 bar H2 and 908C. Catalyst poisoning experiments with CS2 (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of RuNPs.
Resumo:
Superhydrophobic (SH) particles based on a copper substrate were prepared by a silver deposition technique of different particle sizes from 10µm to 425µm. Such SH particles were found to be pH-responsive and liquid marbles formed using the SH copper substrate destabilised under certain pH conditions. The exposure to high concentrations of acidic or basic gases caused immediate collapse of the liquid marble. However, low concentrations of acidic and basic gases could diffuse across the shell of liquid marbles without adversely affecting the structure. Liquid marbles formed with large SH particles (425
µm) did not fully form a mono-layer around the liquid droplet. This phenomenon, whereby SH particles slide down the surface of the water droplet until an equilibrium position is reached, was studied using a mathematical approach, which related the angle to the vertical axis of the SH particles at t
he equilibrium F, to the shape of liquid marble and the contact angle, ?.
Resumo:
An attempt is made to immobilize the homogeneous metal chloride/EMIMCl catalyst for glucose dehydration to 5-hydroxymethylfurfural. To this end, ionic liquid fragments were grafted to the surface of SBA-15 to generate a heterogenized mimick of the homogeneous reaction medium. Despite a decrease in the surface area, the ordered mesoporous structure of SBA-15 was largely retained. Metal chlorides dispersed in such ionic liquid film are able to convert glucose to HMF with much higher yields as is possible in the aqueous phase. The reactivity order CrCl > AlCl > CuCl > FeCl is similar to the order in the ionic liquid solvent, yet the selectivity are lower. The HMF yield of the most promising CrCl-Im-SBA-15 can be improved by using a HO:DMSO mixture as the reaction medium and a 2-butanol/MIBK extraction layer. Different attempts to decrease metal chloride leaching by using different solvents are described. © 2013 American Institute of Chemical Engineers Environ Prog.
Resumo:
The change in the Pt electronic structure following the adsorption of an a,ß-unsaturated aldehyde and ketone was followed by in situ HERFD-XANES in the liquid phase. The resulting shift in the Pt Fermi energy is in good agreement with the molecule adsorption energy trends calculated by DFT and provides insight into the reaction selectivity.
Resumo:
To evaluate the effect of mass transfer limitations in the three-phase oxidation of cinnamyl alcohol carried out in toluene and an ionic liquid (1-butyl-3-methyl-imidazolium bis(trifluoromethylsulphonyl)imide), studies have been performed in a rotating disc reactor and compared with those carried out in a stirred tank reactor where mass transfer effects are considered negligible. High catalyst efficiencies are found in the stirred tank reactor with the use of both ionic liquid and toluene, although there is a decrease in rate for the ionic liquid reactions. In contrast, internal pore diffusion limits the reaction in both solvents in the rotating disc reactor. This mass transfer resistance reduces the problem of overoxidation of the metal surface when the reaction is carried out in toluene, leading to significantly higher rates of reaction than expected, although at the cost of decreased selectivity.
Resumo:
A force field model of phosphorus has been developed based on density functional (DF) computations and experimental results, covering low energy forms of local tetrahedral symmetry and more compact (simple cubic) structures that arise with increasing pressure. Rules tailored to DF data for the addition, deletion, and exchange of covalent bonds allow the system to adapt the bonding configuration to the thermodynamic state. Monte Carlo simulations in the N-P-T ensemble show that the molecular (P-4) liquid phase, stable at low pressure P and relatively low temperature T, transforms to a polymeric (gel) state on increasing either P or T. These phase changes are observed in recent experiments at similar thermodynamic conditions, as shown by the close agreement of computed and measured structure factors in the molecular and polymer phases. The polymeric phase obtained by increasing pressure has a dominant simple cubic character, while the polymer obtained by raising T at moderate pressure is tetrahedral. Comparison with DF results suggests that the latter is a semiconductor, while the cubic form is metallic. The simulations show that the T-induced polymerization is due to the entropy of the configuration of covalent bonds, as in the polymerization transition in sulfur. The transition observed with increasing P is the continuation at high T of the black P to arsenic (A17) structure observed in the solid state, and also corresponds to a semiconductor to metal transition. (C) 2004 American Institute of Physics.
Resumo:
The response of a room temperature molten salt to an external electric field when it is confined to a nanoslit is studied by molecular dynamics simulations. The fluid is confined between two parallel and oppositely charged walls, emulating two electrified solid-liquid interfaces. Attention is focused on structural, electrostatic, and dynamical properties, which are compared with those of the nonpolarized fluid. It is found that the relaxation of the electrostatic potential, after switching the electric field off, occurs in two stages. A first, subpicosecond process accounts for 80% of the decay and is followed by a second subdiffusive process with a time constant of 8 ps. Diffusion is not involved in the relaxation, which is mostly driven by small anion translations. The relaxation of the polarization in the confined system is discussed in terms of the spectrum of charge density fluctuations in the bulk.
Structure and dynamics of a confined ionic liquid. topics of relevance to dye-sensitized solar cells
Resumo:
The behavior of a model ionic liquid (IL) confined between two flat parallel walls was studied at various interwall distances using computer simulations. The results focus both on structural and dynamical properties. Mass and charge density along the confinement axis reveal a structure of layers parallel to the walls that leads to an oscillatory profile in the electrostatic potential. Orientational correlation functions indicate that cations at the interface orient tilted with respect to the surface and that any other orientational order is lost thereafter. The diffusion coefficients of the ions exhibit a maximum as a function of the confinement distance, a behavior that results from a combination of the structure of the liquid as a whole and a faster molecular motion in the vicinity of the walls. We discuss the relevance of the present results and elaborate on topics that need further attention regarding the effects of ILs in the functioning of IL-based dye-sensitized solar cells.
Resumo:
The extraction of both UO22+ and trivalent lanthanide and actinide ions (Am3+, Nd3+, Eu3+) by dialkylphosphoric or dialkylphosphinic acids from aqueous solutions into the ionic liquid, 1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide has been studied and compared to extractions into dodecane. Radiotracer partitioning measurements show comparable patterns of distribution ratios for both the ionic liquid/aqueous and dodecane/aqueous systems, and the limiting slopes at low acidity indicate the partitioning of neutral complexes in both solvent systems. The metal ion coordination environment, elucidated from EXAFS and UV-visible spectroscopy measurements, is equivalent in the ionic liquid and dodecane solutions with coordination of the uranyl cation by two hydrogen-bonded extractant dimers, and of the trivalent cations by three extractant dimers. This is the first definitive report of a system where both the biphasic extraction equilibria and metal coordination environment are the same in an ionic liquid and a molecular organic solvent.
Resumo:
The effects of linear scaling of the atomic charges of a reference potential on the structure, dynamics, and energetics of the ionic liquid 1,3-dimethylimidazolium chloride are investigated. Diffusion coefficients that span over four orders of magnitude are observed between the original model and a scaled model in which the ionic charges are +/- 0.5 e. While the three-dimensional structure of the liquid is less affected, the partial radial distribution functions change markedly-with the positive result that for ionic charges of +/- 0.7 e, an excellent agreement is observed with ab initio molecular dynamics data. Cohesive energy densities calculated from these partial-charge models are also in better agreement with those calculated from the ab initio data. We postulate that ionic-liquid models in which the ionic charges are assumed to be +/- 1 e overestimate the intermolecular attractions between ions, which results in overstructuring, slow dynamics, and increased cohesive energy densities. The use of scaled-charge sets may be of benefit in the simulation of these systems-especially when looking at properties beyond liquid structure-thus providing on alternative to computationally expensive polarisable force fields.
Resumo:
The electrochemical oxidation of 1-butyl-3-methylimidazolium iodide, [C(4)mim]I, has been investigated by cyclic voltammetry at a platinum microelectrode at varying concentrations in the RTIL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(4)mim][NTf2]. Two oxidation peaks were observed. The first peak is assigned to the oxidation of iodide to triiodide, in an overall two-electron process: 3I(-)- 2e(-) -> I-3(-). At higher potentials, the electrogenerated triiodide oxidizes to iodine, in an overall one-electron process: I-3(-) - e(-) -> 3/2I(2). An average diffusion coefficient, D, for I- of 1.55 x 10(-11) m(2) s(-1) was obtained. A digital simulation program was used to simulate the voltammetric response, and kinetic parameters were successfully extracted. The parameters deduced from the simulation include D for I-, I-3(-), and I-2 and K-eq,K-2, the equilibrium constant for the reaction of iodide and iodine to form triiodide. Values for these parameters are of the same order as those previously published for the oxidation of Br- in the same RTIL [Allen et al. J. Electroanal. Chem. 2005, 575, 311]. Next, the cyclic voltammetry of five different inorganic iodide salts was studied by dissolving small amounts of the solid in [C(4)mim][NTf2]. Similar oxidation peaks were observed, revealing diffusion coefficients of ca. 0.55, 1.14, 1.23, 1.44, and 1.33 x 10(-11) m(2) s(-1) and solubilities of 714, 246, 54, 83, and 36 mM for LiI, NaI, KI, RbI, and CsI, respectively. The slightly smaller diffusion coefficients for the XI salts (compared to [C(4)mim]I) may indicate that I- is ion-paired with Li+, Na+, K+, Rb+, and Cs+ in the RTIL medium.
Resumo:
The electrochemical oxidation of potassium nitrite has been studied in the room temperature ionic liquid (RTIL) [C(2)mim][NTf2] by cyclic voltammetry at platinum electrodes. A chemically irreversible oxidation peak was observed, and a solubility of 7.5(+/- 0.5) mM and diffusion coefficient of 2.0(+/- 0.2) x 10(-11) m(2) s(-1) were calculated from potential step chronoamperometry on the microdisk electrode. A second, and sometimes third, oxidation peak was also observed when the anodic limit was extended, and these were provisionally assigned to the oxidation of nitrogen dioxide (NO2) and nitrate (NO3-), respectively. The electrochemical oxidation of nitrogen dioxide gas (NO2) was also studied by cyclic voltammetry in [C(2)mim][NTf2] on Pt electrodes of various size, giving a solubility of ca. 51(+/- 0.2) mM and diffusion coefficient of 1.6(+/- 0.05) x 10(-10) m(2) s(-1) (at 25 degrees C). It is likely that NO2 exists predominantly as its dimer, N2O4, at room temperature. The oxidation mechanism follows a CE process, which involves the initial dissociation of the dimer to the monomer, followed by a one-electron oxidation. A second, larger oxidation peak was observed at more positive potentials and is thought to be the direct oxidation of N2O4. In addition to understanding the mechanisms of NO2- and NO2 oxidations, this work has implications in the electrochemical detection of nitrite ions and of NO2 gas in RTIL media, the latter which may be of particular use in gas sensing.
Resumo:
The electrochemical oxidation of 1-butyl-3-methylimidazolium nitrate [C(4)mim][NO3] was studied by cyclic voltammetry in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [C(2)mim][NTf2]. A sharp peak was observed on a Pt microelectrode (d = 10 mu m), and a diffusion coefficient at infinite dilution of ca. 2.0 x 10(-11) m(2) s(-1) was obtained. Next, the cyclic voltammetry of sodium nitrate (NaNO3) and potassium nitrate (KNO3) was studied, by dissolving small amounts of solid into the RTIL [ C2mim][ NTf2]. Similar oxidation peaks were observed, revealing diffusion coefficients of ca. 8.8 and 9.0 x 10(-12) m(2) s(-1) and solubilities of 11.9 and 10.8 mM for NaNO3 and KNO3, respectively. The smaller diffusion coefficients for NaNO3 and KNO3 (compared to [C(4)mim][NO3]) may indicate that NO3- is ion-paired with Na+ or K+. This work may have applications in the electroanalytical determination of nitrate in RTIL solutions. Furthermore, a reduction feature was observed for both NaNO3 and KNO3, with additional anodic peaks indicating the formation of oxides, peroxides, superoxides and nitrites. This behaviour is surprisingly similar to that obtained from melts of NaNO3 and KNO3 at high temperatures ( ca. 350 - 500 degrees C), and this observation could significantly simplify experimental conditions required to investigate these compounds. We then used X-ray photoelectron spectroscopy (XPS) to suggest that disodium( I) oxide (Na2O), which has found use as a storage compound for hydrogen, was deposited on a Pt electrode surface following the reduction of NaNO3.