44 resultados para left ventricle
Resumo:
This paper presents an efficient. modeling technique for the derivation of the dispersion characteristics of novel uniplanar metallodielectric periodic structures. The analysis is based on the method of moments and an interpolation scheme, which significantly accelerates the computations. Triangular basis functions are used that allow for modeling of arbitrary shaped metallic elements. Based on this method, novel uniplanar left-handed (LH) metamaterials are proposed. Variations of the split rectangular-loop element printed on grounded dielectric substrate are demonstrated to possess LH propagation properties. Full-wave dispersion curves are presented. Based on the dual transmission-line concept, we study the distribution of the modal fields And the variation of series capacitance and shunt inductance for all the proposed elements. A verification of the left-handedness is presented by means of full-wave simulation of finite uniplanar arrays using commercial software (HFSS). The cell dimensions are a small fraction of the wavelength (approximately lambda/24) so that the structures can he considered as a homogeneous effective medium. The structures are simple, readily scalable to higher frequencies, and compatible with low-cost fabrication techniques.
Resumo:
Planar periodic arrays of metallic elements printed on grounded dielectric substrates are presented to exhibit left-handed properties for surface wave propagation. The proposed structures dispense with the need for grounding vias and ease the implementation of uniplanar left-handed metamaterials at higher frequencies. A transmission line description is used for the initial design and interpretation of the left-handed property. A thorough study based on full wave simulations is carried out with regards to the effect of the element geometrical characteristics and the array periodicity to the properties of the artificial material. Dispersion curves are presented and studied. The distribution of the modal fields in the unit cell is also studied in order to provide an explanation of the material properties. The scalability of the proposed structures to infrared frequencies is demonstrated.
Resumo:
We propose a possible mechanism for the generation of magnetic fields in negative refraction index composite metamaterials. Considering the propagation of a high-frequency modulated amplitude electric field in a left-handed material (LHM), we show that the ponderomotive interaction between the field and low-frequency potential distributions leads to spontaneous generation of magnetic fields, whose form and properties are discussed.
Resumo:
Starting from Maxwell's equations, we use the reductive perturbation method to derive a second-order and a third-order nonlinear Schrodinger equation, describing ultrashort solitons in nonlinear left-handed metamaterials. We find necessary conditions and derive exact bright and dark soliton solutions of these equations for the electric and magnetic field envelopes.
Resumo:
Background: Non-invasive diagnosis of acute myocardial infarction (AMI) associated with significant left main stem (LMS) stenosis remains challenging.
Methods: Consecutive patients presenting with acute ischaemic-type chest pain from 2000 to 2010 were analysed. Entry criteria: 12-lead ECG and Body Surface Potential Map (BSPM) at presentation, cardiac troponin T (cTnT) =12?h and coronary angiography during admission. cTnT =0.03?µg/l defined AMI. ECG abnormalities assessed: STEMI by Minnesota criteria; ST elevation (STE) aVR =0.5?mm; ST depression (STD) =0.5?mm in =2 contiguous leads (CL); T-wave inversion (TWI) =1?mm in =2 CL. BSPM STE was =2?mm in anterior, =1?mm in lateral, inferior, right ventricular or high right anterior and =0.5?mm in posterior territories. Significant LMS stenosis was =70%.
Results: Enrolled were 2810 patients (aged 60?±?12 years; 71% male). Of these, 116 (4.1%) had significant LMS stenosis with AMI occurring in 92 (79%). STEMI by Minnesota criteria occurred in 13 (11%) (sensitivity 12%, specificity 92%), STE in lead aVR in 23 (20%) (sensitivity 23%, specificity 92%), TWI in 38 (33%) (sensitivity 34%, specificity 71%) and STD in 51 (44%) (sensitivity 49%, specificity 75%). BSPM STE occurred in 85 (73%): sensitivity 88%, specificity 83%, positive predictive value 95% and negative predictive value 65%. Of those with AMI, 74% had STE in either the high right anterior or right ventricular territories not identified by the 12-lead ECG. C-Statistic for AMI diagnosis using BSPM STE was 0.800 (P?<?0.001).
Conclusion: In patients with significant LMS stenosis presenting with chest pain, BSPM STE has improved sensitivity (88%), with specificity 83%, over 12-lead ECG in the diagnosis of AMI.
Resumo:
Background. Many studies have separately reported abnormalities of frontal and temporal lobe structures in schizophrenia, but little is known of structural fronto-temporal associations in this condition. We investigated whether male patients with chronic schizophrenia would show abnormal patterns of correlation between regional brain volumes.
Methods. Structural magnetic resonance images of the brain in 42 patients were compared with 43 matched unaffected controls. We explored the pattern of association between regional brain volumes by correlational analyses, and non-parametrically tested for significance of between-group differences by randomization.
Results. The schizophrenics demonstrated significant volume deficits in several brain regions (left temporal lobe and hippocampus, right dorsolateral prefrontal cortex), and significant volume increases in the ventricular system (third ventricle and left temporal horn of the lateral ventricle). Controls demonstrated large positive correlations (r > 0.4) between prefrontal and temporal lobe regions. By contrast, inter-regional correlations significantly reduced in schizophrenics included those between prefrontal, anterior cingulate and temporal regions, and between posterior cingulate and hippocampus (P < 0.05). The most salient abnormality in patients was a dissociation between prefrontal and superior temporal gyrus volumes (P < 0.01).
Conclusions. These results support the existence of a relative 'fronto-temporal dissociation' in schizophrenia which we suggest may be due to lack of mutually trophic influences during frontal and temporal lobe development.
Resumo:
Objective: Cardiac irradiation during left-sided breast radiotherapy may lead to
deleterious cardiac side effects. Using image guided radiotherapy, it is possible
to exclude the heart from treatment fields and monitor reproducibility of virtual simulation (VS) fields at treatment delivery using electronic portal imaging (EPI). Retrospectively, we evaluate the incidence of cardiac irradiation at VS and subsequent unintended cardiac irradiation during treatment.
Methods: Patients receiving left-sided radiotherapy to the breast or chest wall,
treated with a glancing photon field technique during a four-month period, were
included. VS images and EPIs during radiotherapy delivery were visually assessed.
The presence of any portion of the heart within the treatment field at VS or during treatment was recorded. Central lung distance and maximum heart distance were recorded.
Results: Of 128 patients, 45 (35.1%) had any portion of the heart within the
planned treatment field. Of these, inclusion of the heart was clinically unavoidable in 25 (55.6%). Of those with no heart included in the treatment fields at VS, 41 (49.4%) had presence of the heart as assessed on EPI during treatment.
Conclusion: Unintended cardiac irradiation during left-sided breast radiotherapy treatment occurs in a sizeable proportion of patients.
Advances in knowledge: Despite the use of three-dimensional computed tomography simulation and cardiac shielding, sizeable proportions of patients receiving left-sided breast cancer radiotherapy have unintended cardiac irradiation.