103 resultados para isotherms of adsorption
Resumo:
The advantage of using an available and abundant residual biomass, such as lignin, as a raw material for activated carbons is that it provides additional economical interest to the technical studies. In the current investigation, a more complete understanding of adsorption of Cr(VI) from aqueous systems onto H PO -acid activated lignin has been achieved via microcolumns, which were operated under various process conditions. The practice of using microcolumn is appropriate for defining the adsorption parameters and for screening a large number of potential adsorbents. The effects of solution pH (2-8), initial metal ion concentration (0.483-1.981 mmol·L ), flow rate (1.0-3.1 cm ·min ), ionic strength (0.01-0.30 mmol·L ) and adsorbent mass (0.11-0.465 g) on Cr(VI) adsorption were studied by assessing the microcolumn breakthrough curve. The microcolumn data were fitted by the Thomas model, the modified Dose model and the BDST model. As expected, the adsorption capacity increased with initial Cr(VI) concentration. High linear flow rates, pH values and ionic strength led to early breakthrough of Cr(VI). The model constants obtained in this study can be used for the design of pilot scale adsorption process. © 2012 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP).
Resumo:
There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.
Resumo:
In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content(similar to 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (similar to 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range similar to 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N-2 (77 K) and CO2 (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) <= 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.
Resumo:
A commercially available coconut-shell-derived active carbon was oxidized with nitric acid, and both the original and oxidized active carbons were treated with ammonia at 1073 K to incorporate nitrogen functional groups into the carbon. An active carbon with very high nitrogen content (similar to9.4 wt % daf) was also prepared from a nitrogen-rich precursor, polyacrylonitrile (PAN). These nitrogen-rich carbons had points of zero charge (pH(pzc)) similar to H-type active carbons. X-ray absorption near-edge structure (XANES) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and temperature-programmed desorption (TPD) were used to characterize the nitrogen functional groups in the carbons. The nitrogen functional groups present on the carbon surface were pyridinic, pyrrolic (or indolic), and pyridonic structures. The adsorption of transition metal cations Cd2+, Ni2+, and Cu2+ from aqueous solution on the suite of active carbons showed that adsorption was markedly higher for carbons with nitrogen functional groups present on the surface than for carbons with similar pH(pzc) values. In contrast, the adsorption characteristics of Ca2+ from aqueous solution were similar for all the carbons studied. Flow microcalorimetry (FMC) studies showed that the enthalpies of adsorption of Cd2+(aq) on the active carbons with high nitrogen contents were much higher than for nitric acid oxidized carbons studied previously, which also had enhanced adsorption characteristics for metal ion species. The enthalpies of adsorption of Cu2+ were similar to those obtained for Cd2+ for specific active carbons. The nitrogen functional groups in the carbons act as surface coordination sites for the adsorption of transition metal ions from aqueous solution. The adsorption characteristics of these carbons are compared with those of oxidized carbons.
Resumo:
Ammonia synthesis on three metal surfaces (Zr, Ru, and Pd) is investigated using density functional theory calculations. In addition to N-2 dissociation, all the transition states of the hydrogenation reactions from N to NH3 are located and the reaction energy profiles at both low and high surface coverages are compared and analyzed. The following are found: (i) Surface coverage effect on dissociation reactions is more significant than that on association reactions. (ii) The difference between N and H chemisorption energies, the so-called chemisorption energy gap which is a measure of adsorption competition, is vital to the reactivity of the catalysts. (iii) The hydrogenation barriers can considerably affect the overall rate of ammonia synthesis. A simple model to describe the relationship between dissociation and association reactions is proposed. (c) 2007 American Institute of Physics.
Resumo:
Silver colloids prepared by reducing AgNO3 in aqueous solution with sodium citrate were embedded in alumina following two different preparation procedures resulting in samples containing 3 and 5 wt.% silver. Characterization of these materials using TEM. XPS, XAES, CP/MAS NMR, XRD, and adsorption-desorption isotherms of nitrogen showed that embedding the pre-prepared silver colloids into the alumina via the sol-gel procedure preserved the particle size of silver. However, as XAES demonstrates, the catalysts prepared in a sol-gel with a lower amount of water led to embedded colloids with a higher population of Ag+ species. The catalytic behaviors of the resultant catalysts were well correlated with the concentration of these species. Thus, the active silver species of the catalysts containing more Ag+ species selectively converts NO to N-2. However, subsequent thermal aging leads to an enhancement of the conversion of NO parallel to slight alteration of the selectivity with the appearance of low amounts of N2O despite an increase of Ag+ species. Accordingly, an optimal surface Ag-0/Ag+ ratio is probably needed, independently of the size of silver particles. It was found that this optimal ratio strongly depends on the operating conditions during the synthesis route. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A new peat-based sorbent was evaluated for the capture of heavy metals from waste streams. The media is a pelletted blend of organic humic material targeted for the capture of soluble metals from industrial waste streams and stormwater. The metals chosen for the media evaluation were Cd, Cu, Ni, and Zn due to their occurrence and abundance in waste streams and runoff. Sorption tests included an evaluation of the rate and extent of metals capture by the media, single versus multicomponent metals uptake, pH, anion influence, leaching effects and the effect of media moisture content on uptake rate and capacity. Isotherms of the sorption results showed that the presence of multiple metals increased the total sorption capacity of the media compared to the single component metal capacity; a result of site selectivity within the media. However the capacity for an individual metal in a multicomponent metal matrix was reduced compared to its single component capacity, due to competition for sites. Evidence of ion exchange behavior was observed but did not account for all metals capture. The media also provided a buffering action to counter the pH drop typically associated with metals capture.
Resumo:
Microkinetic model is developed in the free energy landscape based on density functional theory (DFT) to quantitatively investigate the reaction mechanism of chemoselective partial hydrogenation of crotonaldehyde to crotyl alcohol over Pt(1 1 1) at the temperature of 353 K. Three different methods (mobile, immobile and collision theory models) were carried out to obtain free energy barrier of adsorption/desorption processes. The results from mobile and collision theory models are similar. The calculated TOFs from both models are close to the experiment value. However, for the immobile model, in which the free energy barrier of desorption approaches the energy barrier, the calculated TOF is 2 orders of magnitude lower than the other models. The difficulty of adsorption/ desorption may be overestimated in the immobile model. In addition, detailed analyses show that for the surface hydrogenation elementary steps, the entropy and internal energy effects are small under the reaction condition, while the zero-point-energy (ZPE) correction is significant, especially for the multi-step hydrogenation reaction. The total energy with the ZPE correction approaches to the full free energy calculation for the surface reaction under the reaction condition. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
The present research investigates the uptake of phosphate ions from aqueous solutions using acidified laterite (ALS), a by-product from the production of ferric aluminium sulfate using laterite. Phosphate adsorption experiments were performed in batch systems to determine the amount of phosphate adsorbed as a function of solution pH, adsorbent dosage and thermodynamic parameters per fixed P concentration. Kinetic studies were also carried out to study the effect of adsorbent particle sizes. The maximum removal capacity of ALS observed at pH 5 was 3.68 mg P g-1. It was found that as the adsorbent dosage increases, the equilibrium pH decreases, so an adsorbent dosage of 1.0 g L-1 of ALS was selected. Adsorption capacity (qm) calculated from the Langmuir isotherm was found to be 2.73 mg g-1. Kinetic experimental data were mathematically well described using the pseudo first-order model over the full range of the adsorbent particle size. The adsorption reactions were endothermic, and the process of adsorption was favoured at high temperature; the ΔG and ΔH values implied that the main adsorption mechanism of P onto ALS is physisorption. The desorption studies indicated the need to consider a NaOH 0.1M solution as an optimal solution for practical regeneration applications.
Resumo:
A systematic theoretical study on the adsorption of steam and its thermal decomposition products on carbon both zigzag and armchair surface was performed to provide molecular-level understanding of the reaction activity of all these reactants in biomass steam gasification process. All the calculations were carried out using density functional theory (DFT) at the B3LYP/6-31+g(d,p) level. The structures of carbonaceous surfaces, all reactants and surface complexes were optimized and characterized. Based on the value of adsorption heat been obtained from the calculation, the activity of all reactants can be ordered as: O > O2 >H2 >H >OH >H2O for both zigzag and armchair surface, and the adsorption style is physisorption to water molecule and chemisorption to the other dissociated components.
Resumo:
The majority of bacteria in the natural environment live within the confines of a biofilm. The Gram-positive bacterium Bacillus subtilis forms biofilms that exhibit a characteristic wrinkled morphology and a highly hydrophobic surface. A critical component in generating these properties is the protein BslA, which forms a coat across the surface of the sessile community. We recently reported the structure of BslA, and noted the presence of a large surface-exposed hydrophobic patch. Such surface patches are also observed in the class of surface-active proteins known as hydrophobins, and are thought to mediate their interfacial activity. However, although functionally related to the hydrophobins, BslA shares no sequence nor structural similarity, and here we show that the mechanism of action is also distinct. Specifically, our results suggest that the amino acids making up the large, surface-exposed hydrophobic cap in the crystal structure are shielded in aqueous solution by adopting a random coil conformation, enabling the protein to be soluble and monomeric. At an interface, these cap residues refold, inserting the hydrophobic side chains into the air or oil phase and forming a three-stranded β-sheet. This form then self-assembles into a well-ordered 2D rectangular lattice that stabilizes the interface. By replacing a hydrophobic leucine in the center of the cap with a positively charged lysine, we changed the energetics of adsorption and disrupted the formation of the 2D lattice. This limited structural metamorphosis represents a previously unidentified environmentally responsive mechanism for interfacial stabilization by proteins.
Site symmetry dependence of repulsive interactions between chemisorbed oxygen atoms on Pt{100}-(1x1)
Resumo:
Ab initio total energy calculations using density functional theory with the generalized gradient approximation have been performed for the chemisorption of oxygen atoms on a Pt{100}-(1 x 1) slab. Binding energies for the adsorption of oxygen on different high-symmetry sites are presented. The bridge site is the most stable at a coverage of 0.5 ML, followed by the fourfold hollow site. The atop site is the least stable. This finding is rationalized by analyzing the ''local structures'' formed upon oxygen chemisorption. The binding energies and heats of adsorption at different oxygen coverages show that pairwise repulsive interactions are considerably stronger between oxygen atoms occupying fourfold sites than those occupying bridge sites. Analysis of the partial charge densities associated with Bloch states demonstrates that the O-Pt bond is considerably more localized at the bridge site. These effects cause a sharp drop in the heats of adsorption for oxygen on hollow sites when the coverage is increased from 0.25 to 0.5 ML. Mixing between oxygen p orbitals and Pt d orbitals can be observed over the whole metal d-band energy range.
Resumo:
The surface structure of the clean Co{1010BAR} surface and a c(2 x 2) potassium overlayer have been determined by quantitative low energy electron diffraction. The Co{1010BAR} sample has been shown to be laterally unreconstructed with the surface being uniquely terminated by an outermost closely packed double layer (dz12 = 0.68 angstrom). A damped oscillatory relaxation of the outermost three atomic layers occurs, with relaxations DELTA-dz12 = -6.5 +/- 2% and DELTA-dz23 = +1.0 +/- 2%.
The c(2 x 2) overlayer formed at a coverage of 0.5 ML was subjected to a full I-V analysis. A range of adsorption sites were tested including fourfold hollow, on-top, and both long and short bridge sites in combination with both "long" and "short" cobalt interlayer terminations. A clear preference was found for adsorption in the maximal coordination fourfold hollow site. No switching of surface termination occurs. The potassium adatoms reside in the [1210BAR] surface channels directly above second layer cobalt atoms with a potassium to outermost cobalt interlayer separation of 2.44 +/- 0.05 angstrom. Potassium-cobalt bond lengths of 3.40 +/- 0.05 and 3.12 +/- 0.05 angstrom between the four (one) outermost (second) layer nearest-neighbour substrate atoms suggests a potassium effective radius of 1.87 +/- 0.05 angstrom, somewhat smaller than the Pauling covalent radius and considerably larger than the ionic radius (1.38 angstrom). The alkali-surface bonding is thus predominantly "covalent"/"metallic".
Resumo:
The selective catalytic reduction (SCR) of NOx in the presence of different reducing agents over Ag/Al2O3 prepared by wet impregnation was investigated by probing catalyst activity and using NMR relaxation time analysis to probe the strength of surface interaction of the various reducing agent species and water. The results reveal that the strength of surface interaction of the reducing agent relative to water, the latter present in engine exhausts as a fuel combustion product and, in addition, produced during the SCR reaction, plays an important role in determining catalyst performance. Reducing agents with weak strength of interaction with the catalyst surface, such as hydrocarbons, show poorer catalytic performance than reducing agents with a higher strength of interaction, such as alcohols. This is attributed to the greater ability of oxygenated species to compete with water in terms of surface interaction with the catalyst surface, hence reducing the inhibiting effect of water molecules blocking catalyst sites. The results support the observations of earlier work in that the light off-temperature and maximum NOx conversion and temperature at which that occurs are sensitive to the reducing agent present during reaction, and the proposal that improved catalyst performance is caused by increased adsorption strength of the reducing agent, relative to water, at the catalyst surface. Importantly, the NMR relaxation time analysis approach to characterising the strength of adsorption more readily describes the trends in catalytic behaviour than does a straightforward consideration of the polarity (i.e., relative permittivity) of the reducing agents studied here. In summary, this paper describes a simple approach to characterising the interaction energy of water and reducing agent so as to aid the selection of reducing agent and catalyst to be used in SCR conversions.
Resumo:
The removal of acid dyes, Tectilon Blue 4R, Tectilon Red 2B and Tectilon Orange 3G, from single solute, bisolute and trisolute solutions by adsorption on activated carbon (GAC F400) has been investigated in isotherm experiments. Results from these experiments were modelled using the Langmuir and Freundlich adsorption isotherm theories with the Langmuir model proving to be the more suitable. The Ideal Adsorbed Solution (IAS) model was coupled with the Langmuir isotherm to predict binary adsorption on the dyes. The application of the IAS theory accurately simulated the experimental data with an average deviation of approximately 3% between modelled and experimental data.