339 resultados para insulated concrete panels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to reduce potential uncertainties and conservatism in welded panel analysis procedures, understanding of the relationships between welding process parameters and static strength is required. The aim of this study is to determine and characterize the key process induced properties of advanced welding assembly methods on stiffened panel local buckling and collapse performance. To this end, an in-depth experimental and computational study of the static strength of a friction stir welded fuselage skin-stiffener panel subjected to compression loading has been undertaken. Four welding process effects, viz. the weld joint width, the width of the weld Heat Affected Zone, the strength of material within the weld Heat Affected Zone and the magnitude of welding induced residual stress, are investigated. A fractional factorial experiment design method (Taguchi) has been applied to identify the relative importance of each welding process effect and investigate effect interactions on both local skin buckling and crippling collapse performance. For the identified dominant welding process effects, parametric studies have been undertaken to identify critical welding process effect magnitudes and boundaries. The studies have shown that local skin buckling is principally influenced by the magnitude of welding induced residual stress and that the strength of material in the Heat Affected Zone and the magnitude of the welding induced residual stress have the greatest influence on crippling collapse behavior.


--------------------------------------------------------------------------------

Reaxys Database Information
|

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of advanced welding methods as an alternative joining process to riveting in the manufacture of primary aircraft structure has the potential to realize reductions in both manufacturing costs and structural weight. Current design and analysis methods for aircraft panels have been developed and validated for riveted fabrication. For welded panels, considering the buckling collapse design philosophy of aircraft stiffened panels, strength prediction methods considering welding process effects for both local-buckling and post-buckling behaviours must be developed and validated. This article reports on the work undertaken to develop analysis methods for the crippling failure of stiffened panels fabricated using laser beam and friction stir welding. The work assesses modifications to conventional analysis methods and finite-element analysis methods for strength prediction. The analysis work is validated experimentally with welded single stiffener crippling specimens. The experimental programme has demonstrated the potential static strength of laser beam and friction stir welded sheet-stiffener joints for post-buckling panel applications. The work undertaken has demonstrated that the crippling behaviour of welded stiffened panels may be analysed considering standard-buckling behaviour. However, stiffened panel buckling analysis procedures must be altered to account for the weld joint geometry and process altered material properties. © IMechE 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of an experimental study (the ultimate load capacity of composite metal decking/concrete floor slabs. Full-scale in situ testing of composite floor slabs was carried out in the Building Research Establishment's Large Building Test Facility (LBTF) at Cardington. A parallel laboratory test programme, which compared the behaviour of composite floor slabs strips, also carried out at Queen's University Belfast (QUB). Articular attention was paid to the contribution of compressive membrane action to the load carrying capacity. The results of both test programmes were compared with predictions by yield line theory and a theoretical prediction method in which the amount of horizontal restraint mid be assessed. The full-scale tests clearly demon-wed the significant contribution of compressive membrane effects to the load capacity of interior floor panels with a lesser contribution to edge/corner panels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of short and long term service load tests were undertaken on the sixth floor of the full-scale, seven storey, reinforced concrete building at the Large Building Test Facility of the Building Research Establishment at Cardington. By using internally strain gauged reinforcing bars cast into an internal and external floor bay during the construction process it was possible to gain a detailed record of slab strains resulting from the application of several arrangements of test loads. Short term tests were conducted in December 1998 and long term monitoring then ensued until April 2001. This paper describes the test programmes and presents results to indicate slab behaviour for the various loading regimes.