41 resultados para immersion of manifold
Resumo:
We observed a stellar occultation by Titan on 2003 November 14 from La Palma Observatory using ULTRACAM with three Sloan filters: u, g, and i (358, 487, and 758 nm, respectively). The occultation probed latitudes 2°?S and 1°?N during immersion and emersion, respectively. A prominent central flash was present in only the i filter, indicating wavelength-dependent atmospheric extinction. We inverted the light curves to obtain six lower-limit temperature profiles between 335 and 485 km (0.04 and 0.003 mb) altitude. The i profiles agreed with the temperature measured by the Huygens Atmospheric Structure Instrument [Fulchignoni, M., and 43 colleagues, 2005. Nature 438, 785 791] above 415 km (0.01 mb). The profiles obtained from different wavelength filters systematically diverge as altitude decreases, which implies significant extinction in the light curves. Applying an extinction model [Elliot, J.L., Young, L.A., 1992. Astron. J. 103, 991 1015] gave the altitudes of line of sight optical depth equal to unity: 396±7 and 401±20 km (u immersion and emersion); 354±7 and 387±7 km (g immersion and emersion); and 336±5 and 318±4 km (i immersion and emersion). Further analysis showed that the optical depth follows a power law in wavelength with index 1.3±0.2. We present a new method for determining temperature from scintillation spikes in the occulting body's atmosphere. Temperatures derived with this method are equal to or warmer than those measured by the Huygens Atmospheric Structure Instrument. Using the highly structured, three-peaked central flash, we confirmed the shape of Titan's middle atmosphere using a model originally derived for a previous Titan occultation [Hubbard, W.B., and 45 colleagues, 1993. Astron. Astrophys. 269, 541 563].
Resumo:
We study the structural effects produced by the quantization of vibrational degrees of freedom in periodic crystals at zero temperature. To this end we introduce a methodology based on mapping a suitable subspace of the vibrational manifold and solving the Schrödinger equation in it. A number of increasingly accurate approximations ranging from the quasiharmonic approximation (QHA) to the vibrational self-consistent field (VSCF) method and the exact solution are described. A thorough analysis of the approximations is presented for model monatomic and hydrogen-bonded chains, and results are presented for a linear H-F chain where the potential-energy surface is obtained via first-principles electronic structure calculations. We focus on quantum nuclear effects on the lattice constant and show that the VSCF is an excellent approximation, meaning that correlation between modes is not extremely important. The QHA is excellent for covalently bonded mildly anharmonic systems, but it fails for hydrogen-bonded ones. In the latter, the zero-point energy exhibits a nonanalytic behavior at the lattice constant where the H atoms center, which leads to a spurious secondary minimum in the quantum-corrected energy curve. An inexpensive anharmonic approximation of noninteracting modes appears to produce rather good results for hydrogen-bonded chains for small system sizes. However, it converges to the incorrect QHA results for increasing size. Isotope effects are studied for the first-principles H-F chain. We show how the lattice constant and the H-F distance increase with decreasing mass and how the QHA proves to be insufficient to reproduce this behavior.
Resumo:
In dielectronic recombination of hydrogenlike ions an intermediate doubly excited heliumlike ion is formed. Since the K shell is empty, both excited electrons can decay sequentially to the ground state. In this paper we analyze the x-ray radiation emitted from doubly and singly excited heliumlike titanium ions produced inside the Tokyo electron beam ion trap. Theoretical population densities of the singly excited states after the first transition and the transition probabilities of these states into the ground state were also calculated. This allowed theoretical branching ratios to be determined for each manifold. These branching ratios are compared to the experimentally obtained x-ray distribution by fitting across the relevant peak using a convolution of the theoretically obtained resonance strengths and energies. By taking into account 2E1 transitions which are not observed in the experiment, the measured and calculated ratios agree well. This method provides a valuable insight into the transition dynamics of excited highly charged ions.
Resumo:
Refractive index determination of minerals and gems often requires their immersion in fluids with the same refractive index. However, these natural materials frequently have refractive indices above the ranges of common organic solvents. Most available high refractive index immersion materials are solid at room temperature, toxic, noxious, corrosive, carcinogenic, or any combination thereof. Since the physical properties of ionic liquids can be tuned by varying the cation and/or anion, we have developed immersion fluids for mineralogical studies which are relatively benign. We report here the syntheses of a range of ionic liquids ( many novel) based on the 1-alkyl-3-methylimidazolium cation, which all have refractive indices greater than 1.4, and can be used as immersion fluids for optical mineralogy studies. We further show that for a series of ionic liquids with the same anion, the refractive indices can be adjusted by systematic changes in the cation.
Resumo:
At present, optical microscopy studies of minerals, especially diamonds, are hampered by the lack of available high refractive index (> 1.8) immersion fluids. We report here the syntheses and refractive indices of some 1-alkyl-3-methylimidazolium based ionic liquids containing polyhalide anions, which exhibit refractive indices between 1.6 and 2.23, and thus significantly extend the range of minerals which can be studied.
Resumo:
The tailpipe emissions from automotive engines have been subject to steadily reducing legislative limits. This reduction has been achieved through the addition of sub-systems to the basic four-stroke engine which thereby increases its complexity. To ensure the entire system functions correctly, each system and / or sub-systems needs to be continuously monitored for the presence of any faults or malfunctions. This is a requirement detailed within the On-Board Diagnostic (OBD) legislation. To date, a physical model approach has been adopted by me automotive industry for the monitoring requirement of OBD legislation. However, this approach has restrictions from the available knowledge base and computational load required. A neural network technique incorporating Multivariant Statistical Process Control (MSPC) has been proposed as an alternative method of building interrelationships between the measured variables and monitoring the correct operation of the engine. Building upon earlier work for steady state fault detection, this paper details the use of non-linear models based on an Auto-associate Neural Network (ANN) for fault detection under transient engine operation. The theory and use of the technique is shown in this paper with the application to the detection of air leaks within the inlet manifold system of a modern gasoline engine whilst operated on a pseudo-drive cycle. Copyright © 2007 by ASME.
Resumo:
Chromogenic in situ hybridisation (CISH) has become an attractive alternative to fluorescence in situ hybridisation (FISH) due to its permanent stain which is more familiar to pathologists and because it can be viewed using light microscopy, The aim of the present study is to examine reproducibility in the assessment of abnormal chromosome number by CISH in comparison to FISH. Using three prostate cell lines - PNTIA (derived from normal epithelium), LNCAP and DU145 (derived from prostatic carcinoma), chromosomes 7 and 8 were counted in 40 nuclei in FISH preparations (x100 oil immersion) and 100 nuclei in CISH preparations (x40) by two independent observers. The CISH slides were examined using standard fight microscopy and virtual microscopy. Reproducibitity was examined using paired Student's t-test (P
Resumo:
Introduction
Belfast has been a focus of academic attention for the last forty years with most interest centred on various aspects of ‘the Troubles’. Where there has been interest in the built environment, it has largely been about how the ‘security situation’ impacted directly on architecture and on the design and layout of social housing. This paper seeks to go beyond this to explore how the political- administrative culture of ‘the Troubles’ interacted with ‘normal’ market forces to shape the central area of the city, and to consider the responses of a recently formed activist group, known as the Forum for Alternative Belfast (hereafter referred to as the Forum). The paper is written by three of the directors of the Forum.1 Moreover, the empirical research presented here was undertaken by the Forum as part of a campaign to address issues relating to the design, layout and quality of Belfast’s built environment. In the longstanding tradition of participant observation working within an action-research paradigm, the participants have attempted to offer an account that is evidentially and purposefully selfcritical and reflective. It is of course recognised that while this approach offers many positive attributes, such as phenomenological access through immersion in the project, it also has the potential to bring compromise on research detachment and objectivity.2 To address the latter, the authors have attempted
to avoid polemical argument, and to support claims with primary or secondary research evidence. The authors also acknowledge that action-research has a chequered history; however, they would argue
that their approach is faithful to a concept that sees ‘research’ defined as understanding and ‘action’ defined as seeking change. The Forum’s very purpose is to seek change, but to do this requires evidence, collaboration and demonstration. And in this sense, it is a learning process for all participants, including the research activists, government officials, community organisations and students. The authors also recognise the complexity of factors that affect urban management and change, particularly in a city such as Belfast, which has had to cope with political violence for over thirty years. And they appreciate that in the context of conflict, governance is skewed to cope with political realities. Hamdi reminds us, however, that in practice there is an ‘important dialectic between top-down planning, with its formal and designed laws and structures, and bottom-up selforganizing collectivism—those “quantum and emergent systems” which Jane Jacobs argued long ago give cities their life and order.’3
Resumo:
Fluidised hot melt granulation (FHMG) is a novel granulation technique for processing pharmaceutical powders. Several process and formulation parameters have been shown to significantly influence granulation characteristics within FHMG. In this study we have investigated the effect of the binder properties (binder particle size and binder viscosity) on agglomerate growth mechanisms within FHMG. Low-melting point co-polymers of polyoxyethylene–polyoxypropylene (Lutrol® F68 Poloxamer 188 and Lutrol® F127 Poloxamer 407) were used as meltable binders for FHMG, while standard ballotini beads were used as model fillers for this process. Standard sieve analysis was used to determine the size distribution of granules whereas we utilised fluorescence microscopy to investigate the distribution of binder within granules. This provided further insight into the growth mechanisms during FHMG. Binder particle size and viscosity were found to affect the onset time of granulation. Agglomerate growth achieved equilibrium within short time-scales and was shown to proceed by two competing processes, breakage of formed granules and re-agglomeration of fractured granules. Breakage was affected by the initial material properties (binder size and viscosity). When using binder with a small particle size (<250 µm), agglomerate growth via a distribution mechanism dominated. Increasing the binder particle size shifted the granulation mechanism such that agglomerates were formed predominantly via immersion. A critical ratio between binder diameter and filler has been calculated and this value may be useful for predicting or controlling granulation growth processes.
Resumo:
The effect of several pretreatment methods on the wettability of polycrystalline titania-coated glass (Pilkington Activ) and plain glass are investigated. UV/ozone, immersion in aqua regia, and heating (T > 500 degrees C) render both substrates superhydrophilic (i.e., water contact angle (CA)
Resumo:
A controlled-atmosphere chamber, combined with a CCTV system, is used to monitor continuously the change in shape of water droplets on the self-cleaning commercial glass, Activ, and a sol-gel TiO2 substrate during their irradiation with either UVA or UVC light. This system allows the photoinduced superhydrophilic effect (PSH) exhibited by these materials to be studied in real time under a variety of different conditions. UVA was less effective than UVC in terms of PSH for both titania-coated glasses, and plain glass was unaffected by either form of UV irradiation and so showed no PSH activity. With UVA, ozone increased significantly the rate of PSH for both substrates, but had no effect on the wettability of plain glass. For both titania substrates and plain glass, no PSH activity was observed under an O-2-free atmosphere. A more detailed study of the PSH effect exhibited by Activ revealed that doping the water droplet with either an electron acceptor (Na2S2O8), electron donor (Na2S2O4), or simple electrolyte (KCl) in the absence of oxygen did not promote PSH. However, when Activ was UV irradiated, while immersed in a deoxygenated KCl solution, prior to testing for PSH activity, only a small change in contact angle was observed, whereas under the same conditions, but using a deoxygenated persulfate-containing immersion solution, it was rendered superhydrophilic. The correlation between organic contaminant removal and surface wetting was also investigated by using thick sol-gel films coated with stearic acid; the destruction of SA was monitored by FTIR and sudden wetting of the surface was seen to coincide with the substantial removal of the organic layer. The results of this work are discussed in the context of the current debate on the underlying cause of PSH.
Resumo:
The effectiveness of the antimicrobial peptide maximin-4, the ultrashort peptide H-Orn-Orn-Trp-Trp-NH(2) , and the lipopeptide C(12) -Orn-Orn-Trp-Trp-NH(2) in preventing adherence of pathogens to a candidate biomaterial were tested utilizing both matrix- and immersion-loaded poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogels. Antiadherent properties correlated to both the concentration released and the relative antimicrobial concentrations of each compound against Staphylococcus epidermidis ATCC 35984, at each time point. Immersion-loaded samples containing C(12) -Orn-Orn-Trp-Trp-NH(2) exhibited the lowest adherence profile for all peptides studied over 1, 4, and 24 h. The results outlined in this article show that antimicrobial peptides have the potential to serve as an important weapon against biomaterial associated infections. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.
Resumo:
It is a legitimate assertion that the common ground of work of worth in architecture, whether theoretical or built comes from a firmly held position on the part of the author. In addition to delivery key competencies architectural education should act to support the formation of such a position in the student, or to make students aware of the possibility of holding such a position.
It is with this in mind perhaps that intensive unit-based diploma and masters structures are increasingly becoming the standard structure for for schools of architecture across the UK. The strengths of such a structure are most evident when the school, either by virtue of financial strength or geographic location is able to attract a diverse range of contrasting positions to bear in the formation of these units. In effect the offering to the student is a short, intensive immersion into a clear line of thought based on the position of those running the unit. Research is channeled by those running the unit to the work of the students. A single cohort of students therefore is able to observe and understand a wide range of ways of thinking about the subject whether or not they are participants in a unit or not. It is axiomatic that where this structure is applied in the absence of these resources the result can be less helpful, individual units are differentiated not to reflect the interests of those running the unit but for the sake of difference as its own end.
In structuring the M.Arch programme in Queens University Belfast the reality of our somewhat peripheral location was placed at the forefront of our considerations. A single 4 semester studio is offered. The first three semesters are carefully structured to offer a range of directed and self directed projects to the students. By interrogation of these projects, and work undertaken at undergraduate level the aim is to assist the students to identify a personal position on architecture, which is then developed in the thesis in semester four. Research and design outputs are emergent from the interest of the student body, cultivated by staff who have the time over the four semesters to get to know all aspects of a students interests.
This paper will lay out this structure and some of the projects run within it. Now having delivered two graduating years the successes and challenges of the system will be laid out by reference to several case studies of individual student experiences of the structure.
Resumo:
In this paper, a novel approach to automatically sub-divide a complex geometry and apply an efficient mesh is presented. Following the identification and removal of thin-sheet regions from an arbitrary solid using the thick/thin decomposition approach developed by Robinson et al. [1], the technique here employs shape metrics generated using local sizing measures to identify long-slender regions within the thick body. A series of algorithms automatically partition the thick region into a non-manifold assembly of long-slender and complex sub-regions. A structured anisotropic mesh is applied to the thin-sheet and long-slender bodies, and the remaining complex bodies are filled with unstructured isotropic tetrahedra. The resulting semi-structured mesh possesses significantly fewer degrees of freedom than the equivalent unstructured mesh, demonstrating the effectiveness of the approach. The accuracy of the efficient meshes generated for a complex geometry is verified via a study that compares the results of a modal analysis with the results of an equivalent analysis on a dense tetrahedral mesh.
Resumo:
The creation of idealised, dimensionally reduced meshes for preliminary design and optimisation remains a time-consuming, manual task. A dimensionally reduced model is ideal for assessing design changes through modification of element properties without the need to create a new geometry or mesh. In this paper, a novel approach for automating the creation of mixed dimensional meshes is presented. The input to the process is a solid model which has been decomposed into a non-manifold assembly of smaller volumes with different meshing significance. Associativity between the original solid model and the dimensionally reduced equivalent is maintained. The approach is validated by means of a free-free modal analysis on an output mesh of a gas turbine engine component of industrial complexity. Extensions and enhancements to this work are also discussed.