58 resultados para high strength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solvent-vapour thermoplastic bonding process is reported which provides high strength bonding of PMMA over a large area for multi-channel and multi-layer microfluidic devices with shallow high resolution channel features. The bond process utilises a low temperature vacuum thermal fusion step with prior exposure of the substrate to chloroform (CHCl3) vapour to reduce bond temperature to below the PMMA glass transition temperature. Peak tensile and shear bond strengths greater than 3 MPa were achieved for a typical channel depth reduction of 25 µm. The device-equivalent bond performance was evaluated for multiple layers and high resolution channel features using double-side and single-side exposure of the bonding pieces. A single-sided exposure process was achieved which is suited to multi-layer bonding with channel alignment at the expense of greater depth loss and a reduction in peak bond strength. However, leak and burst tests demonstrate bond integrity up to at least 10 bar channel pressure over the full substrate area of 100 mm x 100 mm. The inclusion of metal tracks within the bond resulted in no loss of performance. The vertical wall integrity between channels was found to be compromised by solvent permeation for wall thicknesses of 100 µm which has implications for high resolution serpentine structures. Bond strength is reduced considerably for multi-layer patterned substrates where features on each layer are not aligned, despite the presence of an intermediate blank substrate. Overall a high performance bond process has been developed that has the potential to meet the stringent specifications for lab-on-chip deployment in harsh environmental conditions for applications such as deep ocean profiling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:


Experimental tests have been completed for high-strength 8.8 bolts for studying their mechanical performance subjected to tensile loading. As observed from these tests, failure of structural bolts has been identified as in one of two ways: threads stripping and necking of the threaded portion of the bolt shank, which is possibly due to the degree of fit between internal and external threads. Following the experimental work, a numerical approach has been developed for demonstration of the tensile performance with proper consideration of tolerance class between bolts and nuts. The degree of fit between internal and external threads has been identified as a critical factor affecting failure mechanisms of high-strength structural bolts in tension, which is caused by the machining process. In addition, different constitutive material laws have been taken into account in the numerical simulation, demonstrating the entire failure mechanism for structural bolts with different tolerance classes in their threads. It is also observed that the bolt capacities are closely associated with their failure mechanisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 1019W cm-2) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10-20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8-10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:


Natural pozzolans can be activated and condensed with sodium silicate in an alkaline environment to synthesize high performance cementitious construction materials with low environmental impact. The nature of the starting materials including mineral composition, chemical composition and crystal structure groups affects the formation of the geopolymer gel phase. In this paper, the pozzolanic activities of five natural pozzolans are studied. From XRD and XRF results, most of the raw materials contain zeolite clay minerals and have a high loss on ignition. Therefore, before use, samples were calcined at 700, 800 and 900 °C, respectively. The improvement in pozzolanic properties was studied following heat treatment including calcinations and/or elevated curing temperature by using alkali solubility and compressive strength tests. The results show that pozzolan containing sodium zeolite clinoptilolite can be used to prepare a moderate to high strength binder by heat treatment and calcinations can impart disorder hornblende as a constituent of pozzolan with no amorphous phase to prepare a moderate strength binder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a comparative study on the treatment of high-strength animal wastewater in two parallel lab-scale constructed reed bed systems, progressively-sized system and anti-sized system, which have same configuration but different arrangement of bed media. The reed bed systems were operated in a tidal flow pattern to treat diluted pig slurry. Detailed analyses were carried out for the removal of some key pollutants including COD, BOD5, NH4-N, P and suspended solids. The results showed that both systems have considerable capacity for the removal of solids, organic matter and inorganic nutrients. The formation of biofilms on the surfaces of gravel media in both reed bed systems was monitored by scanning selected gravel samples using scanning electron microscopy. In general, no significant difference was detected with regard to the percentage pollutant removal in the systems. However, the anti-sized system demonstrated a clear advantage in its ability to slow down the clogging of bed media and avoid the impairment of long-term functioning and sustainability of the beds. A conceptual model was developed to predict the occurrence of the clogging. The validity of the model was tested using data from this study and from the literatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:


The permeability of concrete is influenced by the porosity and the interconnectivity of the pores in the cement paste and the microcracks in concrete, especially in the interface of paste-aggregate. The movements of gases, liquids, and ions through concrete is important because of their interactions with concrete constituents, including pore water, which can alter the integrity of concrete directly and indirectly, leading to the deterioration of structures. This study reports the findings from an investigation carried out to study the effect of the mixture variations on the durability of medium- and high-strength self-consolidating concrete (SCC). The mixture variations studied include the type of mineral admixtures, such as limestone powder (LSP) and pulverized fuel ash (PFA), and viscositymodifying admixtures (VMA) for both medium- and high-strength SCC. Air permeability, water permeability, capillary absorption, and chloride diffusivity were used to assess the durability of SCC mixtures in comparison with normal, vibrated concretes. The results showed that SCC mixtures, for medium- and high-strength grades using PFA followed by LSP, have lower permeability properties compared with normal concretes. SCC made with VMA had a higher sorptivity, air permeability, and water permeability compared with other SCC mixtures, which can be attributed to higher watercement ratio (w/c) and lack of pore filling effect. An in-place migration coefficient was obtained using the in-place ion migration test. This was used to compare the potential diffusivity of different concretes. The results indicated that SCC, for both grades of strength, made with PFA showed much lower diffusivity values in comparison with other mixtures, whereas the SCC mixtures with VMA showed higher diffusivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research on the kinetics of precipitate formation and austenite reversion in maraging steels has received great attention due to their importance to steel properties. Judging from the literature in recent years, research into maraging steels has been very active, mainly extending to new types of steels, for new applications beyond the traditional strength requirements. This chapter provides an in-depth overview of the literature in this area. In addition, the kinetics of precipitate formation are analysed using the Johnson–Mehl–Avrami (JMA) theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitride-strengthened, reduced activation, martensitic steel is anticipated to have higher creep strength because of the remarkable thermal stability of nitrides. Two nitride-strengthened, reduced activation martensitic steels with different carbon contents were prepared to investigate the microstructure and mechanical property changes with decreasing carbon content. It has been found that both steels had the microstructure of full martensite with fine nitrides dispersed homogeneously in the matrix and displayed extremely high strength but poor toughness. Compared with the steel with low carbon content (0.005 pct in wt pct), the steel with high carbon content (0.012 pct in wt pct) had not only the higher strength but also the higher impact toughness and grain coarsening temperature, which was related to the carbon content. On the one hand, carbon reduction led to Ta-rich inclusions; on the other hand, the grain grew larger when normalized at high temperature because of the absence of Ta carbonitrides, which would decrease impact toughness. The complicated Al2O3 inclusions in the two steels have been revealed to be responsible for the initiated cleavage fracture by acting as the critical cracks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interest in alkali-activated slag as a construction material is increasing, primarily due to its environmentally friendly nature. Although strong alkaline activators, such as sodium hydroxide and sodium silicate solution, are preferred for high strength, none of them exists naturally and their manufacturing process is quite energy intensive. Whilst sodium sulfate (NaSO ) can be obtained from natural resources, the early strength of NaSO activated slag is usually low. In this paper, the effects of slag fineness and NaSO dosage on strength, pH, hydration and microstructure were investigated and compared with those of a pure Portland cement (PC). Test results indicated that increasing the slag fineness is a more effective approach than increasing NaSO dosage for increasing both the early and long-term strength of NaSO activated slags. In addition, increasing the slag fineness can also increase the strength without increasing the pH of the hardened matrix, which is beneficial for immobilizing certain types of nuclear waste containing reactive metals and resins.© 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the beneficial influence of compressive membrane action in fibre reinforced polymer (FRP)reinforced in-plane restrained slabs in bridge deck slabs and the improved service performance when archingaction occurs. Bridge deck slabs that are exposed to extreme environmental conditions can experience severecorrosion damage. Expansive corrosion in steel reinforcement significantly reduces the design life and durabilityof concrete structures; for example, on one short section of the M1 in Northern Ireland, nearly £1 million was spent last year on the maintenance and repair of bridges due to corrosion. Corrosion-resistant compositereinforcement such as basalt fibre reinforced polymer (BFRP) and glass fibre reinforced polymer (GFRP) provides adurable alternative to reinforcing steel. In this research, two BFRP reinforced slabs and two GFRP reinforced slabswere constructed using high-strength concrete with a target cube compressive strength of 65 N/mm2. The slabsrepresented typical full-scale dimensions of a real bridge deck slab 475 mm wide by 1425 mm long and 150 mmdeep. The service and ultimate behaviour of the slabs are discussed and the results are compared with the relevantdesign guidelines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fibre distribution and orientation in a series of round panel specimens of ultra high performance fibre reinforced concrete (UHPFRC) was investigated using electrical resistivity measurements and confirmed by X-ray CT imaging. By pouring specimens in different ways, the orientation of steel fibres was influenced and the sensitivity of the electrical resistivity technique was investigated. The round panels were tested in flexure and the results are discussed in relation to the observed orientation of fibres in the panels. It was found that the fibres tended to align perpendicular to the direction of flow. As a result, panels poured from the centre were significantly stronger than panels poured by other methods because the alignment of fibres led to more fibres bridging the radial cracks formed during mechanical testing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Small mixer impeller design is not tailored for granulation because impellers are intended for a wide range of processes. The aim of this research was to evaluate the performances of several impellers to provide guidance on the selection and design for the purposes of granulation. Lactose granules were produced using wet granulation with water as a binder. A Kenwood KM070 mixer was used as a standard apparatus and five impeller designs with different shapes and surface areas were used. The efficacy of granulate formation was measured by adding an optically sensitive tracer to determine variations in active ingredient content across random samples of granules from the same size classes. It was found that impeller design influenced the homogeneity of the granules and therefore can affect final product performance. The variation in active ingredient content across granules of differing size was also investigated. The results show that small granules were more potent than larger granules.