89 resultados para heterogeneous delays
Resumo:
We present a multimodal detection and tracking algorithm for sensors composed of a camera mounted between two microphones. Target localization is performed on color-based change detection in the video modality and on time difference of arrival (TDOA) estimation between the two microphones in the audio modality. The TDOA is computed by multiband generalized cross correlation (GCC) analysis. The estimated directions of arrival are then postprocessed using a Riccati Kalman filter. The visual and audio estimates are finally integrated, at the likelihood level, into a particle filter (PF) that uses a zero-order motion model, and a weighted probabilistic data association (WPDA) scheme. We demonstrate that the Kalman filtering (KF) improves the accuracy of the audio source localization and that the WPDA helps to enhance the tracking performance of sensor fusion in reverberant scenarios. The combination of multiband GCC, KF, and WPDA within the particle filtering framework improves the performance of the algorithm in noisy scenarios. We also show how the proposed audiovisual tracker summarizes the observed scene by generating metadata that can be transmitted to other network nodes instead of transmitting the raw images and can be used for very low bit rate communication. Moreover, the generated metadata can also be used to detect and monitor events of interest.
Resumo:
The sea-cliffs of the Isle of Wight were deposited during a period of overall sea-level rise starting in the Barremian (Lower Cretaceous) and continuing into the Aptian and Albian. They consist of fluvial, coastal and lagoonal sediments including greensands and clays. Numerous episodes of erosion, deposition and faunal colonization reflect condensation and abandonment of surfaces with firmgrounds and hardgrounds. This study focused mainly on shallow marine cycles where variations in clay mineralogy would not be expected, because overall system composition, sediment source, and thermal history are similar for all the samples in the studied section. Instead we found a wide variety of clay assemblages even in single samples within a 200 in interval.
Resumo:
BACKGROUND:
The genetic heterogeneity of many Mendelian disorders, such as retinitis pigmentosa which results from mutations in over 40 genes, is a major obstacle to obtaining a molecular diagnosis in clinical practice. Targeted high-throughput DNA sequencing offers a potential solution and was used to develop a molecular diagnostic screen for patients with retinitis pigmentosa.
METHODS:
A custom sequence capture array was designed to target the coding regions of all known retinitis pigmentosa genes and used to enrich these sequences from DNA samples of five patients. Enriched DNA was subjected to high-throughput sequencing singly or in pools, and sequence variants were identified by alignment of up to 10 million reads per sample to the normal reference sequence. Potential pathogenicity was assessed by functional predictions and frequency in controls.
RESULTS AND CONCLUSIONS:
Known homozygous PDE6B and compound heterozygous CRB1 mutations were detected in two patients. A novel homozygous missense mutation (c.2957A?T; p.N986I) in the cyclic nucleotide gated channel ß1 (CNGB1) gene predicted to have a deleterious effect and absent in 720 control chromosomes was detected in one case in which conventional genetic screening had failed to detect mutations. The detection of known and novel retinitis pigmentosa mutations in this study establishes high-throughput DNA sequencing with DNA pooling as an effective diagnostic tool for heterogeneous genetic diseases.
Resumo:
The activity and nature (i e heterogeneous and/or homogeneous) of catalysts based on CsF supported on alpha-Al2O3 were investigated for the transesterification of vegetable oil with methanol. The effect of the activation temperature, CsF loading and the reusability in a recirculating reactor were first studied CsF/alpha-Al2O3 exhibited the highest activity for a CsF loading of 0 6 mmol/g and when activated at 120 degrees C An important aspect of this study is the effect of CsF leaching into the reaction mixture, which is attributed to the high solubility of CsF in methanol, leading to a complete loss of activity after one run It was Identified that the activity of the catalyst resulted from a synergy between alumina and dissolved CsF, the presence of both compounds being absolutely necessary to observe any conversion The use of an alumina with a higher surface area resulted in a far greater reaction rate, showing that the concentration of surface site on the oxide (probably surface hydroxyl) was rate-limiting in the case of the experiments using the low surface area alpha-Al2O3 This work emphasizes that combined homogeneous-heterogeneous catalytic systems made from the blending of the respective catalysts can be used to obtain high conversion of vegetable oil to biodiesel. Despite the homogeneous/heterogeneous dual character, such a catalytic system may prove valuable in developing a simple and cost-effective continuous catalytic process for biodiesel production (C) 2010 Elsevier B V All rights reserved
Resumo:
This paper investigates the performance of the tests proposed by Hadri and by Hadri and Larsson for testing for stationarity in heterogeneous panel data under model misspecification. The panel tests are based on the well known KPSS test (cf. Kwiatkowski et al.) which considers two models: stationarity around a deterministic level and stationarity around a deterministic trend. There is no study, as far as we know, on the statistical properties of the test when the wrong model is used. We also consider the case of the simultaneous presence of the two types of models in a panel. We employ two asymptotics: joint asymptotic, T, N -> infinity simultaneously, and T fixed and N allowed to grow indefinitely. We use Monte Carlo experiments to investigate the effects of misspecification in sample sizes usually used in practice. The results indicate that the assumption that T is fixed rather than asymptotic leads to tests that have less size distortions, particularly for relatively small T with large N panels (micro-panels) than the tests derived under the joint asymptotics. We also find that choosing a deterministic trend when a deterministic level is true does not significantly affect the properties of the test. But, choosing a deterministic level when a deterministic trend is true leads to extreme over-rejections. Therefore, when unsure about which model has generated the data, it is suggested to use the model with a trend. We also propose a new statistic for testing for stationarity in mixed panel data where the mixture is known. The performance of this new test is very good for both cases of T asymptotic and T fixed. The statistic for T asymptotic is slightly undersized when T is very small (
Resumo:
The most promising way to maintain reliable data transfer across the rapidly fluctuating channels used by next generation multiple-input multiple-output communications schemes is to exploit run-time variable modulation and antenna configurations. This demands that the baseband signal processing architectures employed in the communications terminals must provide low cost and high performance with runtime reconfigurability. We present a softcore-processor based solution to this issue, and show for the first time, that such programmable architectures can enable real-time data operation for cutting-edge standards
such as 802.11n; furthermore, by exploiting deep processing pipelines and interleaved task execution, the cost and performance of these architectures is shown to be on a par with traditional dedicated circuit based solutions. We believe this to be the first such programmable architecture to achieve this, and the combination of implementation efficiency and programmability makes this implementation style the most promising approach for hosting such dynamic architectures.
Resumo:
Simple and powerful: The reaction kinetics at surfaces of heterogeneous catalysts is reformulated in terms of the involved chemical potentials. Based on this formulism, an approach of searching for good catalysts is proposed without recourse to extensive calculations of reaction barriers and detailed kinetic analyses. (see picture; R=reactant, I=surface intermediate, P=product, and =standard chemical potential).
Resumo:
We propose a complex fiber bundle model for the optimization of heterogeneous materials, which consists of many simple bundles. We also present an exact and compact recursion relation for the failure probability of a simple fiber bundle model with local load sharing, which is more efficient than the ones reported previously. Using a ''renormalization method'' and the recursion relation developed for the simple bundle, we calculate the failure probabilities of the complex fiber bundle. When the total number of fibers is given, we find that there exists an optimum way to organize the complex bundle, in which one gets a stronger bundle than in other ways.