40 resultados para helium neon laser
Resumo:
Lasing properties of a collisional-excitation Ne-like Ge soft-x-ray laser have been studied with exploding-foil, single-slab, and double-slab targets under identical pumping conditions. Experimental results for the angular intensity distributions and the temporal variations of the lasing intensities are examined with a hydrodynamic code and ray-trace calculations. The observed angular distribution are well reproduced by these analyses, and it is found that the effective gain regions are located on the high-density side of the expected gain regions. It is shown that the observed lasing intensity of the J = 0 to J = 1 line is strongly correlated with the temporal change of the calculated electron temperature for both the slab and the exploding-foil targets.
Resumo:
The complex problem of a collisionally pumped Ne-like geranium laser is examined through several detailed models. The central model is EHYBRID; a 1 1/2D fluid code which self consistently treats the plasma expansion with the atomic physics of the Ne-like ion for 124 excited levels through a collisional radiative treatment. The output of EHYBRID is used as data for ray-tracing and saturation codes which generate experimental observables. A detailed description of the models is given.
Resumo:
We describe the properties of the exploding foil neon-like germanium soft X-ray lasers having wavelengths of 19-28 nm and gain length product of more than 10. The measured X-ray intensity of lasing lines from an exploding foil target has been explained with the results of the plasma hydrodynamic code from the viewpoint of suitable condition of electron density and temperature for creating population inversion.
Resumo:
We present results of experiments studying the efficiency of high harmonic generation from a gas target using the TITANIA krypton fluoride laser at the Rutherford Appleton Laboratory. The variation of harmonic yield for the 7th to 13th harmonics (355-191 Angstrom) is studied as a function of the backing pressure of a solenoid valve gas jet and of the axial position of the laser focus relative to the centre of the gas jet nozzle. Harmonic energies up to 1 mu J were produced in helium and neon targets from laser energies of approximately 200 mJ. This corresponds to absolute conversion efficiencies of up to 5 x 10(-6).
Resumo:
We have used optical Rayleigh and Thomson scattering to investigate the expansion dynamics of laser induced plasma in atmospheric helium and to map its electron parameters both in time and space. The plasma is created using 9 ns duration, 140 mJ pulses from a Nd:YAG laser operating at 1064 nm, focused with a 10 cm focal length lens, and probed with 7 ns, 80 mJ, and 532 nm Nd:YAG laser pulses. Between 0.4 μs and 22.5 μs after breakdown, the electron density decreases from 3.3 × 1017 cm−3 to 9 × 1013 cm−3, while the temperature drops from 3.2 eV to 0.1 eV. Spatially resolved Thomson scattering data recorded up to 17.5 μs reveal that during this time the laser induced plasma expands at a rate given by R ∼ t0.4 consistent with a non-radiative spherical blast wave. This data also indicate the development of a toroidal structure in the lateral profile of both electron temperature and density. Rayleigh scattering data show that the gas density decreases in the center of the expanding plasma with a central scattering peak reemerging after about 12 μs. We have utilized a zero dimensional kinetic global model to identify the dominant particle species versus delay time and this indicates that metastable helium and the He2 + molecular ion play an important role.
Resumo:
In this work, a laser-produced plasma extreme ultraviolet source and a free electron laser were used to create Ne photo-ionized plasmas. In both cases, a radiation beam was focused onto a gas stream injected into a vacuum chamber synchronously with the radiation pulse. Extreme ultraviolet radiation from the plasma spanned a wide spectral range with pronounced maximum centered at lambda = 11 +/- 1 nm while the free electron laser pulses were emitted at a wavelength of 32 nm. The power density of the focused plasma radiation was approximately 2 x 10(7) W/cm(2) and was seven orders of magnitude lower compared with the focused free electron laser beam. Radiation fluences in both experimental conditions were comparable. Despite quite different spectral characteristics and extremely different power densities, emission spectra of both photo-ionized plasmas consist of the same spectral lines within a wavelength range of 20 to 50 nm, however, with different relative intensities of the corresponding lines. The dominating spectral lines originated from singly charged ions (Ne II); however, Ne III lines were also detected. Additionally, computer simulations of the emission spectra, obtained for photo-ionized plasmas, driven by the plasma extreme ultraviolet source, were performed. The corresponding measured and calculated spectra are presented. An electron temperature and ionic composition were estimated. Differences between the experimental spectra, obtained for both irradiation conditions, were analyzed. The differences were attributed mainly to different energies of driving photons.
Resumo:
We present calculations of intense-field multiphoton ionization processes in helium at XUV wavelengths. The calculations are obtained from a full-dimensional integration of the two-electron time-dependent Schrödinger equation. A momentum-space analysis of the ionizing two-electron wavepacket reveals the existence of double-electron above threshold ionization (DATI). In momentum-space two distinct forms of DATI are resolved, namely non-sequential and sequential. In non-sequential DATI correlated electrons resonantly absorb and share energy in integer units of Ïlaser.
Resumo:
We review principally some recent work carried out in Belfast and Heraklion which handles the few-electron dynamics of atomic and molecular systems exposed to high frequency. high intensity laser fields. The design and application of the quantitatively accurate computational methods is discussed. The Belfast work is illustrated by results for double ionization of helium and the hydrogen molecule where in each case the two electrons have been handled in full-dimensionality. The first results for multiphoton, double ionization of a complex atom, namely magnesium demonstrate an important application of the Heraklion approach.
Resumo:
The density of metastable helium atoms in a dielectric barrier discharge operating in helium with some impurities present has been measured using laser-collisional-induced fluorescence and absorption techniques. Time-resolved measurements indicate that helium metastables contribute to the production of impurity ions, in this case N-2(+), in the postdischarge current phase of a glow discharge. In our particular discharge environment, the helium metastable density is (1.5+/-1.4)x10(10) cm(-3), a result consistent with failure to observe absorption by metastables in a multipass absorption measurement. (C) 2004 American Institute of Physics.
Resumo:
Collisional effects can have strong influences on the population densities of excited states in gas discharges at elevated pressure. The knowledge of the pertinent collisional coefficient describing the depopulation of a specific level (quenching coefficient) is, therefore, important for plasma diagnostics and simulations. Phase resolved optical emission spectroscopy (PROES) applied to a capacitively coupled rf discharge excited with a frequency of 13.56 MHz in hydrogen allows the measurement of quenching coefficients for emitting states of various species, particularly of noble gases, with molecular hydrogen as a collision partner. Quenching coefficients can be determined subsequent to electron-impact excitation during the short field reversal phase within the sheath region from the time behavior of the fluorescence. The PROES technique based on electron-impact excitation is not limited â?? in contrast to laser techniques â?? by optical selection rules and the energy gap between the ground state and the upper level of the observed transition. Measurements of quenching coefficients and natural fluorescence lifetimes are presented for several helium (3 1S,4 1S,3 3S,3 3P,4 3S), neon (2p1 ,2p2 ,2p4 ,2p6), argon (3d2 ,3d4 ,3d18 and 3d3), and krypton (2p1 ,2p5) states as well as for some states of the triplet system of molecular hydrogen.